Combination of metamaterials and singular optics fueling research innovation

September 12, 2012
Research being conducted in Litchinitser's lab could be used to develop new technology designed to process greater amounts of information quicker than traditional microchips.

(—Will humans ever control lightning? Could we make the invisible visible, and vice versa?

It's those questions and more that researchers such as Natalia Litchinitser, an associate professor of electrical engineering at the University at Buffalo, are exploring in the evolving field of modern optics.

Optics, or the science of light, is a centuries-old branch of physics that examines the properties and behavior of light, including its interaction with matter, and the instruments that use and detect it.

Modern optics refers to advancements starting in the 2oth century to present. Examples include high-powered lasers, light-emitting diodes (LEDs) and .

The synergy of two branches of modern optics—metamaterials and singular optics—is fueling even more , Litchinitser wrote in an essay published Aug. 31 in the journal Science. The essay can be found at

"Metamaterials and singular optics are two fascinating branches of modern optics that until recently were rapidly developing in parallel yet independently," Litchinitser writes.

The field of metamaterials focuses on the development of manmade structures that exhibit optical, acoustical and not found in nature. They have many potential uses, such as creating high-resolution imaging devices and improved sensors. They're also used to make that might someday render objects invisible.

Singular optics, meanwhile, centers on manipulating —usually with a laser and other components—into a corkscrew pattern that resembles a tornado's shape. The effect, which leaves a dark hole in the light's center, is called an optical .

Like metamaterials, singular optics has many potential applications, including improving bandwidth efficiency and data processing rates. It also may enable researchers to build that, when pointed into a storm cloud, could control lightning to avoid potential strikes with airports, power plants or other sensitive structures.

A small but growing number of researchers began combining elements of metamaterials and singular optics last decade with the financial support of the Department of Defense, NASA and other federal agencies, Litchinitser said.

Litchinitser's research received a boost last year when the Defense Department awarded her and fellow researchers Alexander N. Cartwright and Grover Swartzlander a $1.4 million grant. A UB professor of , Cartwright is UB's vice president for research and economic development. Swartzlander is a physics professor at the Rochester Institute of Technology.

The researchers—along with a team of postgraduate, graduate and undergraduate students—are using elements of singular optics and metamaterials to develop new technology designed to process greater amounts of information quicker than traditional microchips.

The potential for metamaterials and singular optics is perhaps best summed up at the conclusion of Litchinitser's essay.

"Metamaterials are poised to bring new dimensions to the science and applications of complex light..." the essay says.

Explore further: Negative Index Materials: From Theory to Reality

Related Stories

Negative Index Materials: From Theory to Reality

June 6, 2006

Kent State University researchers are leading a team of scientists from eight institutions, who have been awarded a $5.5 million Multidisciplinary University Research Initiative (MURI) from the Air Force Office of Scientific ...

Exotic metamaterials will change optics

March 18, 2012

Duke University engineers believe that continued advances in creating ever-more exotic and sophisticated man-made materials will greatly improve their ability to control light at will.

Topological transitions in metamaterials

April 14, 2012

The ability to control the flow of electrons using engineered materials is fundamental to the information technology revolution, yet many properties of matter are still unclear. Now a University of Alberta researcher is closer ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.