Researchers closer to early detection of Parkinson's disease

September 26, 2012

(—In collaboration with colleagues at Oxford, a team of researchers at Umeå University in Sweden has now further elaborated its discovery of a way to detect Parkinson's disease at an early stage, and applications in clinical care are not far away.

The project is an example of bridging the gap between basic and clinical research in care environments. The new findings are based on close cooperation between the medical chemist Ludmilla Morozova-Roche's and the Lars Forsgren's research teams at Umeå University and Jason Davis's team at Oxford University in the UK, who were primarily responsible for the chemical analyses. Their findings are now being published in the journal .

Parkinson's disease attacks the nervous system and, like many other diseases, is caused by proteins that lump together into so-called amyloid. Behind these new findings lies a discovery from the spring of 2011, when the Umeå scientists were able to determine endogenous antibodies against the most important , alpha-synuclein. These antibodies were seen as being able to function as a , thereby enabling early detection of the disease.

In the new article the discovery is elaborated further in the form of a simplified way to carefully measure the content of antibodies in a . With the newly developed method – this involves electrochemical analysis of 10 microliters of blood in just a few minutes – it is possible not only to see a clear difference between individuals with incipient Parkinson's disease and healthy controls but also to measure and establish the advance of the disease with great precision.

More information: T Bryan, X Luo, L Forsgren, L Morozova-Roche and JJ Davis. The robust electrochemical detection of a Parkinson's disease marker in whole blood sera, Chemical Science, DOI: 10.1039/c2sc21221h

Related Stories

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.