C-dot research has potential for improved bioimaging, medical diagnostics

Sep 14, 2012
C-dot research has potential for improved bioimaging, medical diagnostics
Typical transmission electron microscopy (TEM) images of Carbon dots. Credit: IOP / STAM

Work led by Amita Pathak at the Indian Institute of Technology has produced water-soluble C-dots that selectively emit light across the entire visible range without any surface coating. The properties of these new C-dots make them ideal for a variety of bioimaging applications and for medical diagnostics.

Carbon dots (C-dots) are light-emitting (luminescent) nanoparticles that can be used to track biological processes inside cells. They are less toxic than similar alternatives, making them more suitable for use in live biological systems, but the light-emitting properties of those currently made are not ideal.

A variety of approaches have been used to make C-dots, but most require coating of the particles with other molecules to achieve useful luminescence. Now, work led by Amita Pathak at the Indian Institute of Technology has produced water-soluble C-dots that selectively emit light across the entire without any surface coating.

The researchers produced these C-dots by breaking down the carbohydrate dextrin with microwaves. The resulting C-dots emitted different colours of light when excited by specific wavelengths, even without coating them. Exactly how this multi-coloured luminescence arises is unclear, but it allows precise control of the that can be tailored to specific needs.

To ensure that the C-dots were not toxic, the team added different concentrations of the nanoparticles to . After three days, they determined how many cells had survived. Increasing concentrations of C-dots made little difference to , showing that the C-dots are not toxic and could therefore be used in live tissue.

The properties of these new C-dots make them ideal for a variety of bioimaging applications and for medical diagnostics. The same researchers have already begun to look at how they may be used to investigate interactions between drugs and cells.

Explore further: Artificial muscles get graphene boost

More information: Nagaprasad Puvvada, B N Prashanth Kumar, Suraj Konar, Himani Kalita, Mahitosh Mandal and Amita Pathak (2012) "Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications" Sci. Technol. Adv. Mater. Vol. 13 p. 045008. DOI: dx.doi.org/10.1088/1468-6996/13/4/045008

Related Stories

Luminescent ink from eggs

Sep 13, 2012

(Phys.org)—Luminescent carbon nanoparticles based on carbon exhibit advantageous optical properties. They are also biocompatible, and therefore better suited for imaging procedures in the biosciences than ...

New genre of sugar-coated 'quantum dots' for drug delivery

Mar 04, 2009

(PhysOrg.com) -- Scientists in Switzerland are reporting an advance that could help tap the much-heralded potential of “quantum dots”— nanocrystals that glow when exposed to ultraviolet light — in the treatment of ...

Etched quantum dots shape up as single photon emitters

Feb 23, 2011

(PhysOrg.com) -- Like snowflakes or fingerprints, no two quantum dots are identical. But a new etching method for shaping and positioning these semiconductor nanocrystals might change that. What's more, tests ...

Coupling of Single Quantum Dots to Smooth Metal Films

Jul 20, 2009

Scientists at Argonne National Laboratory's CNM Nanophotonics Group have measured how light emission from individual colloidal semiconductor nanocrystals, or quantum dots, is modified when in proximity to ...

Recommended for you

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

Printing 3-D graphene structures for tissue engineering

May 19, 2015

Ever since single-layer graphene burst onto the science scene in 2004, the possibilities for the promising material have seemed nearly endless. With its high electrical conductivity, ability to store energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.