'Bed of nails' material for clean surfaces

Sep 17, 2012

(Phys.org)—Scientists at the University of Twente's MESA+ Institute for Nanotechnology have developed a new material that is not only extremely water-repellent but also extremely oil-repellent. It contains minuscule pillars which retain droplets. What makes the material unique is that the droplets stay on top even when they evaporate (slowly getting smaller). This opens the way to such things as smartphone screens that really cannot get dirty. The study appears today in the scientific journal Soft Matter.

Water-repellent surfaces can be used as a coating for windows, obviating the need to clean them ever again. These surfaces have an orderly arrangement of tiny pillars less than one-hundredth of a millimetre high (similar to a bed of nails but on an extremely small scale). stay on the tips of the pillars, retaining the shape of perfectly round tiny pearls. As a result they can roll off the surface like marbles, taking all the dirt with them.

Nanotechnologists at the University of Twente have now managed to create a that retains not only water droplets but also like tiny pearls (see illustration). What makes the material unique is that the droplets remain in place even when they evaporate (get smaller).

With existing materials, evaporating droplets drop down between the pillars onto the surface after a while, changing in shape to hemispheres which can no longer simply roll off the surface. The surface can therefore still get dirty. By modifying the edges and the roughness of the minuscule the UT scientists have managed to create a surface on which the droplets do not drop down even when they evaporate but stay neatly on top.

Clean smartphone screens

Surfaces that repel both water and oil are currently used among other things as a dirt-resistant coating on smartphones screens. In practice the screens still get dirty, however, showing e.g. greasy fingerprints. The material developed by the UT scientists brings screens that really never get dirty a lot closer.

Explore further: Engineers develop new sensor to detect tiny individual nanoparticles

More information: The study appears today in the scientific journal Soft Matter.

add to favorites email to friend print save as pdf

Related Stories

First 'microsubmarines' designed to help clean up oil spills

May 02, 2012

Scientists are reporting development and successful testing of the first self-propelled "microsubmarines" designed to pick up droplets of oil from contaminated waters and transport them to collection facilities. The report ...

Recommended for you

New method for non-invasive prostate cancer screening

6 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

7 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

8 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

12 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

ValeriaT
not rated yet Sep 17, 2012
These rough surfaces appear nice at lab, but in real life they're too fragile and prone to contamination - after then they become the reservoirs of bacteria instead. http://www.youtub...A5vNryQk
abclark
not rated yet Sep 19, 2012
The smallest mycoplasma bacteria are 200nm. The scale in the image shows 5nm. so, in a sense, it is also antibacterial.