Bacterial cell division: Researchers elucidate structure of a Z-ring

Sep 12, 2012 by Claire Thompson
An OMX Blaze image of the Z-ring structure in Staphylococcus aureus

(Phys.org)—The latest in super-resolution microscope technology has allowed Australian researchers rewrite the book on the process of bacterial cell division, potentially opening the door to new kinds of antibiotics.

Researchers from the ithree institute at the University of Technology, Sydney have outlined a world-first discovery depicting a detailed picture of the structure of the Z-ring, the main protein that controls how a bacterial cell divides, in the latest edition of leading international biology journal .

Using UTS's DeltaVision OMX with Blaze SIM Module – the first Blaze microscope in the world to be commercially installed – a team led by Professor Liz Harry has provided the first evidence that the Z-ring actually looks like "beads-on-a-string" in a dividing bacterial cell.

"Previously, researchers believed that the Z-ring was a continuous belt that looped around the cell to make it constrict as the cell split in two during division," Professor Harry said.

The research revises the model of how cell division occurs inside and could be the starting point for a new generation of antibiotics targeting the cell division process.

"Bacteria, like all organisms, need to divide in order to survive. The cell doubles in size before dividing in two, ensuring that each newborn cell gets the right number of chromosomes," Professor Harry said.

"With the original version of the OMX microscope, we could look at the bacteria and get more detail about the Z-ring and its structure, but because the images took a little while to capture, we had to do it on cells that didn't move – we had to kill them to get them to stay still.

"With the OMX Blaze technology we can speed up the rate of image capture as well as exposing the cells to a much lower amount of energy. This means being able to capture of live cells without causing damage to them.

"It turns out that the Z-ring is a very dynamic beads-on-a-string structure, changing shape constantly as a cell divides. We also found that other proteins that are involved in the process of cell division follow the same pattern."

As antibiotic resistance becomes an increasing issue in modern-day health care, new antibiotic targets are essential for finding solutions that will treat infections found in hospitals and the wider community.

"Cell division is a process that has not been targeted by antibiotics to date – and so there are a range of possibilities in how antibiotics could be developed to kill bacteria by inhibiting ," Professor Harry said.

"The use of OMX Blaze has opened up a whole new world of possibilities for biology research, starting with what we have discovered here."

Paul Goodwin, director of advanced applications at GE Healthcare, the inventors and manufacturers of the Blaze technology, said, "We have worked closely with Professor Harry's team, and it's exciting and gratifying to see how quickly they have been able to make truly unique observations that will help progress the vital search for novel antibiotics."

Director of the ithree institute Professor Ian Charles said, "This ground-breaking research demonstrates how the investment in world class facilities here in NSW can help us push back our understanding in basic science and at the same time pave a way for application of that science to new medical discoveries.

"We desperately need to find new ways to combat infectious diseases with the rise of resistant superbugs, and I am confident that this research will make a contribution to that urgent quest."

Explore further: Scientists throw light on the mechanism of plants' ticking clock

More information: Strauss MP, Liew ATF, Turnbull L, Whitchurch CB, Monahan LG, et al. (2012) 3D-SIM Super Resolution Microscopy Reveals a Bead-Like Arrangement for FtsZ and the Division Machinery: Implications for Triggering Cytokinesis. PLoS Biol 10(9): e1001389. doi:10.1371/journal.pbio.1001389

Related Stories

Combatting antibiotic resistant bacteria

Jan 31, 2011

(PhysOrg.com) -- Researchers at Lawrence Livermore National Laboratory (LLNL) have discovered a new way to combat antibiotic resistant bacteria by using the bacteria's own genes.

Scientists explore new window on the origins of life

Feb 12, 2009

(PhysOrg.com) -- The remarkable behaviour of bacteria that have been forced to live without their protective wall has allowed Newcastle University scientists to open a new window on the origins of life on earth.

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0