Atomic layer deposition passivation for high-efficiency i-PERC silicon solar cells

Sep 24, 2012
SoLayTec InPassion LAB (PDT) tool for deposition of spatial ALD Al2O3.

At this week's European Photovoltaic Solar Energy Conference and Exhibition (27th EUPVSEC, 24/08-28/08), imec, RENA and SoLayTec present thin (165µm), large area (156x156mm2) i-PERC-type Silicon solar cells with ALD (atomic layer deposition) passivation achieving a cell efficiency of 19.6% without selective emitter using an industrial screen printing process flow.

The solar cell manufacturing has been performed within imec's solar cell pilot line using RENA in-line lab equipment for the rear-side polishing and emitter removal steps, and the SoLayTec in-line spatial ALD process development tool (InPassion LAB) for the ALD-Al2O3 deposition. Within imec's i-PERC process flow, a of 19.6% with an open circuit voltage Voc of 665mV has been delivered for the best cell, with an average of 19.4% for the small series batch. "These results indicate that spatial ALD-Al2O3 can offer excellent passivation without suffering from front-side parasitic deposition;" explains Dr. Aude Rothschild, Senior scientist and responsible for the Al2O3 passivation development in imec's PV department. "The excellent passivation level obtained with the technology allow for even higher efficiencies so that further improvement of solar cell performance is expected in the near future. We are aiming at +20% efficiency in the coming months."

Franck Delahaye, product manager solar at RENA: "This excellent cell result shows the maturity of RENA's InPolish for rear-side polishing and InOxSide for junction isolation for next generation cell concepts as i-PERC".

Roger Görtzen, Co-founder and manager marketing and sales at SoLayTec:"The excellent rear-side passivation results show the properties of SoLayTec's ALD Al2O3 process. The lab process is scalable to . Together with the low TMAl consumption, it results in the lowest cost of ownership. This is the first choice passivation layer for and thin p-type PERC ."

The results were achieved within imec's silicon solar cell industrial affiliation program (IIAP), a multi-partner R&D program that explores and develops advanced process technologies aiming a sharp reduction in silicon use, whilst increasing cell efficiency and hence further lowering substantially the cost per Watt peak.

Explore further: Measuring on ice: Researchers create 'smart' ice skating blade

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Samsung phones cleared for US government use

41 minutes ago

Samsung Electronics Co. said Tuesday some of its Galaxy mobile devices were approved by the National Security Agency for use with classified U.S. government networks and data, a boost to the company's efforts to expand in ...

Amazon, Simon & Schuster sign book retail deal

1 hour ago

Amazon has reached a deal with American book publisher Simon & Schuster, the companies said, though the e-commerce giant remains at loggerheads with France's Hachette over e-book pricing.

Review: Apple Pay in action

2 hours ago

If there ever comes a day I can ditch my wallet and use my phone to pay for everything, I'll look back to my first purchase through Apple Pay: a Big Mac and medium fries for $5.44. That wallet-free day won't ...

User comments : 0