More accurate wind energy forecasts

Sep 06, 2012
Specialists install the 200-meter high measuring mast. Credit: Fraunhofer IWES / Klaus Otto

Wind power is one of the most important forms of renewable energy. In order to exploit inland wind as effectively as possible, turbines must be optimally positioned and dimensioned. A 200-meter high wind measuring mast delivers precise data that can also be used to forecast energy yields.

The decision has been taken by the to transform the energy system and phase out nuclear . The transition process is gaining impetus but much remains to be done. During the course of which, the production of is to be dramatically expanded – not only through costly offshore facilities, but onshore as well. "There is still immense potential inland that remains to be tapped, such as in the low ," says Tobias Klaas, scientist at the Fraunhofer Institute for Wind Energy and Technology IWES in Kassel. Klaas is also the head of the "Inland Wind " research project sponsored by the German Federal Ministry for the Environment.

To run a wind farm as efficiently as possible, planners must know in advance precisely what wind speeds predominate at the site, and what kind of turbulence is to be expected. The problem: "With conventional methods, it is almost impossible, or possible only at great effort and expense, to measure projected power when planning modern, large-scale facilities," says Klaas. Moreover, forests and hills hamper the analysis of wind conditions. Experts refer to this aspect as "complex terrain," where topography influences wind conditions, even at great heights.

Tallest wind measuring mast in Europe

For these reasons, Klaas and his colleagues at IWES erected a 200 meter wind measuring mast. Since January, on a tree-covered hill not far from Kassel, they have been taking measurements of wind speeds, turbulence and additional . It is Europe's tallest measuring mast for wind energy. Conventional masts are only about 100 meters in height. The rotor blade of a modern turbine, however, easily reaches double that height. As astonishing as it may sound: Scientists know little about the dynamics of wind conditions up there. "Indeed, there are theories about how wind speed increases with height, yet these no longer apply at such great heights. Hence, actual measurement values are needed to further develop the models," explains Klaas.

For instance, trees decelerate ground-level winds and create turbulence, and it was previously not possible to draw readily available conclusions about the conditions at the upper regions based on these data. Thanks to the Fraunhofer researchers' measuring mast, this can now be done. Using ultrasound anemometers (special wind gauges), it records, in spatial terms, how fast and in which direction the wind is blowing, thereby rendering a precise depiction of the turbulence. Conventional vane anemometers moreover establish wind speed and direction at various heights. They additionally measure other meteorological factors, like air pressure, humidity and temperature. The figures on precipitation amounts and the duration of sunshine complete the data set. "We have achieved a unique sensory device that allows us to determine the impact of these parameters on ," says Klaas.

The detailed measurements not only help in the optimal alignment of wind turbines, but also in determining the appropriate dimensions. This is the precondition for ensuring, for example, that the turbines are built at the correct height and designed with no greater mass than necessary, which saves on expenses.

With the aid of the wind measuring mast, it should additionally be possible to develop standards for LIDAR (light detection and ranging), the new ground-based remote measurement process. The laser-optical measurement process is considered the key to wind profile measurements up to heights of several hundred meters. Due to the lack of standards, LIDAR remains unapproved as the sole measurement process for expert reports on wind, which are the basis for yield calculations. If successfully granted one day, thanks to the Fraunhofer measuring mast, then such approval would make expert reports on superfluous, because LIDAR would render measuring masts obsolete.

Explore further: Cook farm waste into energy

add to favorites email to friend print save as pdf

Related Stories

Power generation is blowing in the wind

Jan 17, 2012

(PhysOrg.com) -- By looking at the stability of the atmosphere, wind farm operators could gain greater insight into the amount of power generated at any given time.

Computer model optimizes wind farm

Jul 25, 2011

A new software from Siemens will improve wind farms’ energy yields and extend their service life. When the wind causes the huge rotors to turn, it generates turbulence, which interferes with the operation ...

Smart wind turbines can predict the wind

Jan 05, 2010

Risø DTU researchers have recently completed the world’s first successful test on a wind turbine with a laser-based anemometer built into the spinner in order to increase electricity generation.

Wind farms: A danger to ultra-light aircraft?

Aug 03, 2012

Airfields for ultra-light aircraft are typically constructed on level ground – and so are wind farms. However, do wind power plantsgenerate turbulence that could endanger lightweight planes? A simulation ...

Space technology optimises windmill efficiency

Dec 07, 2009

(PhysOrg.com) -- A French start-up company from ESA's Business Incubation Centre in the Netherlands has developed a small instrument to measure wind speed and direction from the ground up to heights of 200 ...

Global warming reduces available wind energy

Nov 09, 2010

A switch to wind energy will help reduce greenhouse gas emissions -- and reduce the global warming they cause. But there's a catch, says climate researcher Diandong Ren, a research scientist at the University of Texas at ...

Recommended for you

Cook farm waste into energy

19 hours ago

It takes some cooking, but turning farm waste into biofuels is now possible and makes economic sense, according to preliminary research from the University of Guelph.

Developing a reliable wind 'super grid' for Europe

21 hours ago

EU researchers are involved in the development of a pan-European 'super grid' capable of dispersing wind power across Member States. This will bring more renewable energy into homes and businesses, help reduce ...

Boeing 737 factory to move to clean energy

Dec 16, 2014

Boeing said Tuesday it plans to buy renewable energy credits to replace fossil-fuel power at the factory in Washington state where it assembles its 737 commercial airplanes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.