X-ray experts 'decode' diesel soot

Aug 06, 2012

Since June 2012, it is official: The World Health Organisation (WHO) has classified diesel soot as a lung carcinogen. Artur Braun, a physicist at Empa and an X-ray spectroscopy expert, has made crucial contributions to analyzing the structure and composition of soot particles.

Soot particles are dangerous – there is nothing new in this knowledge. But what is it that makes fine particulates dangerous? Is it only diesel soot from vehicle engines? Does the danger also come from wood-burning stoves in holiday chalets? Or even from grease-laden fryer fumes from the restaurant around the corner? For a long time, these questions have been a hard nut for science to crack. Indeed, fine soot particles were collected in filters and their chemical components were analysed. Yet the question remained: what precisely is the source of the danger? Is it the soot particles themselves that make people ill? Or is it toxic chemicals the soot carries with it – like a wet sponge?

The Norwegian Institute of Public Health wanted to investigate this matter and asked Empa scientist Artur Braun for support. Before joining Empa, Braun had worked at the University of Kentucky and there, in 2002, he analyzed soot particles for the first time on a synchrotron using soft X-rays. Result: diesel particles that have been "born" in the engine under high pressure and immense heat have a graphite structure – this is clearly visible under X-ray light. In the case of soot particles from wood fires, which have been generated under mild atmospheric conditions, this graphite structure is absent. The functional groups are also different: diesel soot was found to contain carboxyl groups such as those occurring in formic and acetic acid molecules; in the wood smoke, Braun found hydroxyl groups as in ethanol and methanol. There is thus a fine difference between smoke and smoke.

The Norwegian toxicologists then went a step further and asked Braun's colleagues at the University of North Dakota to isolate the soot particles from the adherent chemical toxic substances using solvents. Braun then analysed the components individually under X-ray light: first the "bare" soot particles, then the solution with the suspected carcinogenic chemicals previously bound to the soot. Braun again found various functional groups on the carbon structure and was able to compare them with the findings of his earlier work.

At the same time, the toxicologists tested the effect of the two soot fractions on human lung cells in culture. For the first time separate investigations had been carried out to establish what is so dangerous in soot. The study, which recently appeared in the journal Toxicology Letters, is, in Braun's opinion, the first to combine the methods of X-ray absorption (NEXAFS) with toxicological methods.

The results of the study were quite unambiguous: The "bare" triggered a genetic detoxification mechanism in the cell cultures. The cells had therefore been under "toxic attack". However, the washed out substances previously adhering to the soot also exhibited an effect: they caused inflammatory reactions in the cells and also acted as a cellular toxin. The World Health Organization (WHO) responded simultaneously. A number of new studies – including those by Braun and his colleagues from Norway and the USA – had indicated the carcinogenic effect of soot and sufficiently explained the underlying mechanisms.

It was now no longer possible to speak, as had been the case since 1988, of a probable risk of cancer ("probably carcinogenic to humans"). Reclassification followed on 12 June 2012. Diesel soot is now considered a cause of lung cancer "based on sufficient evidence"; what's more, there is a certain probability that diesel soot also increases the risk of bladder cancer.

Physicist Artur Braun – after his " assistance" in the field of health research – is resuming his duties as group leader in Empa's High Performance Ceramics Laboratory, a position in which he also continues to work on synchrotrons in the USA and in Europe. He is regularly at the ALS radiation source in Berkeley (California) and at the Stanford synchrotron (SSRL) for measurements. For Empa, the expert uses synchrotron radiation methods for materials research into energy storage devices and converters.

Currently, there is another publication in preparation on the subject of fine particulates from wood combustion, to which Braun has also made crucial contributions. The cooperation between the disciplines will not end there. According to Braun, "The medical scientific potential of synchrotron methods for analyzing the biological interaction of cells with pathogenic substances is still far from being exhausted".

Explore further: Scientists develop 'electronic nose' for rapid detection of C. diff infection

add to favorites email to friend print save as pdf

Related Stories

Half of inhaled diesel soot gets stuck in the lungs: study

Jun 27, 2012

The exhaust from diesel-fuelled vehicles, wood fires and coal-driven power stations contains small particles of soot that flow out into the atmosphere. The soot is a scourge for the climate but also for human health. Now ...

Cleaner diesels thanks to laser light

Dec 07, 2007

Dutch researcher Bas Bougie has developed a laser system to investigate soot development in diesel engines. Small soot particles are not retained by a soot filter but are, however, more harmful than larger soot particles. ...

Is it safe to breathe yet?

Apr 26, 2010

Anyone who has ridden behind a truck belching black exhaust knows the smell and discomfort caused by soot, the airborne carbon particles that result from the incomplete combustion of hydrocarbons such as diesel ...

Clean soot particle filters

Oct 05, 2011

The soot particle filters found on diesel vehicles are designed to ensure that no harmful particles make their way through the exhaust pipe. Often, though, the exhaust from newer-model engines is not hot enough ...

Recommended for you

Faster, cheaper tests for sickle cell disease

10 hours ago

Within minutes after birth, every child in the U.S. undergoes a battery of tests designed to diagnose a host of conditions, including sickle cell disease. Thousands of children born in the developing world, ...

Simulations for better transparent oxide layers

14 hours ago

Touchscreens and solar cells rely on special oxide layers. However, errors in the layers' atomic structure impair not only their transparency, but also their conductivity. Using atomic models, Fraunhofer ...

The chemistry of beer and coffee

17 hours ago

University of Alabama at Birmingham professor Tracy Hamilton, Ph.D., is applying his chemistry expertise to two popular beverages: beer and coffee.

User comments : 0