Study suggests viscous materials do not follow standard laws below a sub-melting point threshold

Aug 01, 2012

So-called glass-formers are a class of highly viscous liquid materials that have the consistency of honey and turn into brittle glass once cooled to sufficiently low temperatures. Zhen Chen and his colleagues from Arizona State University, USA, have elucidated the behaviour of these materials as they are on the verge of turning into glass in an article about to be published in European Physical Journal E..

Although scientists do not yet thoroughly understand their behaviour when approaching the glassy state, this new study, which relies on an additional type of dynamic measurements, clearly shows that they do not behave like more simple fluids, referred to as "activated" fluids. This is contrary to recent reports.

Typically, the dynamics of are described using a formula called the Arrhenius law, which is well known for chemical reaction rates. It states that a very simple law regulates how affects characteristics such as viscosity and relaxation times –i.e., delay in returning to equilibrium after the material has been subjected to a perturbation.

The authors used a so-called "residuals" analysis to show that Arrhenius type dynamics is not a common behaviour at temperatures between a sub-melting point threshold, called the crossover temperature, which occurs at a dynamic transition point, and the glass transition temperature, where the liquid becomes a glassy solid.

Zhen Chen and co-authors came to this conclusion by analysing not only the material's viscosity but also more precise data on the dielectric relaxation time available within the same temperature range. This gave them a more exact account of relaxation dynamic properties in highly viscous materials.

The study revealed the need for greater precision in the data of glass-former materials to avoid masking its actual behaviour from data treatment and graphical representation.

Explore further: Atomic trigger shatters mystery of how glass deforms

More information: Z. Chen et al. (2012). On the dynamics of liquids in their viscous regime approaching the glass transition. European Physical Journal E 35: 65; DOI 10.1140/epje/i2012-12065-2

add to favorites email to friend print save as pdf

Related Stories

Sneaking up on the glassy transition of water

Sep 26, 2011

Rapid cooling of ordinary water or compression of ordinary ice: either of these can transform normal H2O into an exotic substance that resembles glass in its transparency, brittleness, hardness, and luster. Unlike everyday ...

Researchers demystify glasses by studying crystals

Nov 30, 2010

Glass is something we all know about. It's what we sip our drinks from, what we look out of to see what the weather is like before going outside and it is the backbone to our high speed communications infrastructure (optical ...

Recommended for you

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

User comments : 0