Virus detector harnesses ring of light in 'whispering gallery mode'

August 24, 2012

By affixing nanoscale gold spheres onto a microscopic bead of glass, researchers have created a super-sensor that can detect even single samples of the smallest known viruses. The sensor uses a peculiar behavior of light known as "whispering gallery mode," named after the famous circular gallery in St. Paul's Cathedral in London, where a whisper near the wall can be heard around the gallery.

In a similar way, waves of light are sent whirling around the inside of a small glass bead, resonating at a specific frequency. Just as a small object on a vibrating violin string can change its frequency – ever so slightly – so too can a virus landing on the sensor change the resonant frequency of the light.

With the initial glass sphere, researchers were able to detect changes in frequency from viruses about the size of influenza, a relatively large virus. The system, however, was not sensitive enough to detect anything smaller, such as the .

The researchers were able to increase the sensitivity of the device nearly seventyfold by adding gold nanospheres to the surface of the glass, which created what the researchers referred to as "plasmonic hot spots" – areas where the coupled with waves of electrons. This hybrid sensor not only detected the presence of the MS2 virus – the current light-weight in the world of RNA viruses – it also was able to determine the weight of the virus by measuring the precise frequency change of the light. With a few minor adjustments, the sensor should also be able to detect single proteins, such as that appear in the blood long before outward signs of cancer can be detected.

The results were published in the American Institute of Physics (AIP) journal .

Explore further: Researcher Develops Sensor to Detect E.coli

More information: Appl. Phys. Lett. 101, 043704 (2012); doi:10.1063/1.4739473

Related Stories

Researcher Develops Sensor to Detect E.coli

September 24, 2006

As the Food and Drug Administration takes days to track down the source of the E. coli outbreak, Dr. Raj Mutharasan is optimizing a sensor that can enable growers to do the job themselves in a few minutes.

Recommended for you

Nano-watermark sorts fakes from genuines

June 27, 2016

Nanoga, an EPFL-based startup, has developed a technique to put a nanoscopic watermark onto glass or ceramic. Products with this watermark, which is invisible to the naked eye and only shows up under ultraviolet light, are ...

Hybrid nanogenerator harvests hard-to-reach ocean energy

June 21, 2016

(Phys.org)—Energy from the ocean, or "blue energy," is arguably the most underexploited power source, according to researchers in a new study. Although the oceans contain enough energy to meet all of the world's energy ...

Nanoscientists develop the 'ultimate discovery tool'

June 23, 2016

The discovery power of the gene chip is coming to nanotechnology. A Northwestern University research team is developing a tool to rapidly test millions and perhaps even billions or more different nanoparticles at one time ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.