UNL discovery has implications for finding life on Earth, Mars

August 16, 2012 by Ashley Washburn
Cover of the August issue of Geology.

(Phys.org) -- Moqui marbles, unusual balls of rock that can be found rolling around the southwestern U.S. sandstone regions, were formed roughly 2 million years ago with the help of microorganisms. This discovery by a University of Nebraska-Lincoln research team has implications for finding life on Mars and for better understanding Earth's past.

The research by Karrie Weber, assistant professor of and microbial biogeochemistry, and her colleagues is featured on the cover of the August issue of Geology, the journal of the .

Moqui marbles, which range in size from BBs to cannonballs, weather out of sandstone and have a hard, round shell made of , or rust, and a soft, sandy interior. Previous theories of their formation had suggested a chemical reaction devoid of life, but Weber's team discovered clear evidence that played a role.

With limited organic carbon or light to feed on, microorganisms instead used siderite, a mineral containing iron carbonate, as an energy and , a process that oxidized the iron and turned it into iron oxide. It also produced acid, which dissolved the iron carbonate into iron and carbonates that dispersed to the mineral's exterior lining. The process continued until a thick shell of iron oxide formed, leaving a bleached sandy core containing little iron. Microorganisms further converted the inorganic carbonates into organic carbon.

To determine that microorganisms were involved, researchers looked for telltale , principally nitrogen and organic carbon. Compared to minerals, living beings usually contain a "lighter" isotope of carbon, or one with fewer neutrons, and chemical analyses indicated the presence of this lighter carbon. Looking at the material using a , they discovered structures that resembled microorganisms. Nanoscale geochemical analyses conducted by colleagues at the University of Western Australia provided a detailed chemical composition of the structures that further indicate microbial life.

"We found iron oxide is associated with these structures that resemble microorganisms," Weber said. "So all of the information put together tells us that microbial life was present, active and played a role in iron biomineralization."

The discovery demonstrates that life could persist in this type of rocky, iron-rich environment. It provides a guide for searching for elsewhere on Earth, or even on Mars, the focus of much scientific investigation, where similar structures have been found.

This allows for a target that can be identified more easily than having to search at the fine scale, such as looking for DNA, Weber said.

Weber is collecting samples from environments in Colorado and Nebraska where microorganisms are oxidizing iron and she will study that process in more detail in the laboratory. She also is investigating similar processes in which microorganisms are chemically changing the current environment.

Explore further: A new process for making much-sought iron nanospheres

Related Stories

A new process for making much-sought iron nanospheres

February 19, 2007

Using a process that creates bubbles as hot as the surface of the sun, chemists are reporting development of a new method for making hollow hematite (iron oxide) nanospheres. The University of Illinois at Urbana-Champaign's ...

Ocean iron and CO2 interaction studied

April 26, 2007

A French study suggested that iron supply changes from deep water to the ocean's surface might have a greater effect on atmospheric CO2 than thought.

Progress Toward a Biological Fuel Cell?

December 30, 2008

(PhysOrg.com) -- Biological fuel cells use enzymes or whole microorganisms as biocatalysts for the direct conversion of chemical energy to electrical energy. One type of microbial fuel cell uses anodes (positive electrodes) ...

Oxygen 'sensor' may shut down DNA transcription

June 19, 2012

(Phys.org) -- A key component found in an ancient anaerobic microorganism may serve as a sensor to detect potentially fatal oxygen, a University of Arkansas researcher and his colleagues have found. This helps researchers ...

Recommended for you

Poor air quality kills 5.5 million worldwide annually

February 12, 2016

New research shows that more than 5.5 million people die prematurely every year due to household and outdoor air pollution. More than half of deaths occur in two of the world's fastest growing economies, China and India.

Long-term picture offers little solace on climate change

February 8, 2016

Climate change projections that look ahead one or two centuries show a rapid rise in temperature and sea level, but say little about the longer picture. Today (Feb. 8, 2016), a study published in Nature Climate Change looks ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.