Toshiba develops dysprosium-free samarium-cobalt magnet to replace heat-resistant neodymium magnet

August 16, 2012

Toshiba Corporation announced today that the company has developed a high-iron concentration samarium-cobalt magnet that is free of dysprosium, a rare earth mineral that is in extremely short supply and increasingly expensive. At typical operating temperatures, the samarium-cobalt magnet has superior magnetic properties to the heat-resistant neodymium magnets currently used in motors.

The traction motors for hybrid and electric automobiles, railroad vehicles, and the motors for industrial equipment operate at relatively , and heat-resistant neodymium magnets are generally used in these applications. However, is a key material of these magnets. Current sources of dysprosium are limited, and recent export limitations and price rises are raising global concerns for future shortages. In these circumstances, the development of dysprosium-free high performance magnets that offer a strong magnetic force at high operating temperatures is an important objective for the industry.

Toshiba has used heat-treatment technology to improve the magnetic force of the samarium-cobalt magnet, and in doing so, has boosted its performance to a level surpassing that of the heat-resistant neodymium magnet. The high-iron concentration samarium-cobalt magnet exceeds the heat-resistant neodymium magnet in magnetic force by 1% at an operating temperature of 100°C by, and 5% at, 150°C. Toshiba achieved this by reducing the oxide and the phase with high copper concentrations in the magnet, both of which inhibit , and by increasing the amount of iron in the magnet from 15% to 20% by weight.

Toshiba has verified the performance of the new magnet when applied in motors for automobiles, locomotives, machine tools and elevators, confirming that it has almost the same capabilities as heat-resistant neodymium magnets of the same size. The magnet is highly suited to motors that must combine high heat resistance with high performance and a small size.

The company aims to start mass production of the magnet at the end of the current fiscal year and promote its use in all applicable equipment.

Explore further: New World Record For Superconducting Magnet Set

Related Stories

New World Record For Superconducting Magnet Set

August 7, 2007

A collaboration between the National High Magnetic Field Laboratory at Florida State University and industry partner SuperPower Inc. has led to a new world record for a magnetic field created by a superconducting magnet.

Ames Laboratory beefing up magnets for electric-drive cars

January 9, 2008

Ask Iver Anderson at the U.S. Department of Energy’s Ames Laboratory about consumer interest in and desire for “ultragreen” electric-drive vehicles, and he’ll reply without a moment’s hesitation that the trend is ...

Magnetic memories manipulated by voltage, not heat

August 29, 2011

In their search for smaller, faster information-storage devices, physicists have been exploring ways to encode magnetic data using electric fields. One advantage of this voltage-induced magnet control is that less power is ...

Recommended for you

Facebook ready to test giant drone for Internet service

July 30, 2015

Facebook says it will begin test flights later this year for a solar-powered drone with a wingspan as big as a Boeing 737, in the next stage of its campaign to deliver Internet connectivity to remote parts of the world.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.