New technology could improve treatment for diabetes, other disorders

Aug 16, 2012 By Ryan Garcia
New technology could improve treatment for diabetes, other disorders

(Phys.org) -- For people suffering from diabetes and other hormonal disorders, staying healthy means staying vigilant; effective treatment requires periodic and precise doses of drugs throughout the day.

The constant upkeep can make for an inconvenient and stressful way of life, but managing these disorders could become easier thanks to drug-delivery technology being developed by Zhengdong Cheng, associate professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University.

Cheng’s work, which is detailed in the scientific journal Drug Delivery Letters, is exploring a new method for manufacturing the tiny particles that once inside the bloodstream deliver drug treatments to targeted areas of the body. Unlike previous models, Cheng’s drug delivery particles could potentially administer periodic doses of the drug they contain throughout the day – something that has historically proven difficult for drug-delivery technology but if achieved could eliminate the need for a patient to self-administer multiple times, he says.

Typically, drug delivery vehicles are limited by a single mode of release, meaning a drug is released into the body in a slow but continuous manner or all at once, Cheng notes. For some treatments, that’s ok, but such a delivery method won’t work for everything – think of how a diabetic has to administer insulin at specific times throughout the day.

For these instances, a periodic release is required, and to achieve this Cheng has taken the construction of these drug-delivery particles in a new direction, pairing something called an ion exchanger with a pH-sensitive hydrogel, the material that forms his drug-delivery particle.

With the help of the ion exchanger, the drug-delivery particle undergoes some complex reactions that result in the particle being made to expand and contract in an oscillating manner, Cheng explains. With every expansion, the “gate” of the particle essentially opens, allowing the drug to pass into the affected area of the body. With every contraction, the “gate” closes, and the drug cannot be released into the body, Cheng says.

Think of the ion exchanger as a sort of converter at the molecular level, Cheng says. It’s made from microscopic crystals embedded in the particle, and it helps change the pH levels inside the particle, he explains.

Specifically, the ion exchanger exchanges sodium ions to produce protons and form molecular compounds, Cheng notes. Initially, sodium ions diffuse into the hydrogel and trigger the ion-exchange reaction. As part of the reaction, protons are generated and the pH level inside the hydrogel decreases, which causes contraction.

Later when the pH level is low enough, the ion exchange reaction works in an opposite manner to restore equilibrium, he explains. As part of this process, hydroxide ions diffuse into the hydrogel, neutralizing the protons and producing water. This neutralizes the acid, and the hydrogel absorbs water and swells, Cheng says. The swelling and shrinking cycle can repeat several times before stopping, depending on the availability of sodium and hydroxide ions and the ion exchange process.

Although there is still work to be done before Cheng’s mechanism becomes a viable -delivery vehicle, preliminary results are promising, he says, noting that the particles have demonstrated the ability to deliver a payload with a system. He plans to continue researching the model to further explore methods of controlling the oscillating effects in different environments as well as with different payloads.

Explore further: Researchers use neutron scattering and supercomputing to study shape of a protein involved in cancer

add to favorites email to friend print save as pdf

Related Stories

Gold nanoparticles for controlled drug delivery

Dec 30, 2008

(PhysOrg.com) -- Using tiny gold particles and infrared light, MIT researchers have developed a drug-delivery system that allows multiple drugs to be released in a controlled fashion.

Attacking cancer cells with nanoparticles

Oct 25, 2011

(PhysOrg.com) -- About every three days, Colleen Alexander, a chemistry graduate student, feeds cells that cause a deadly type of brain cancer. It’s a ritual that involves assessing the health of the ...

Tiny capsules deliver drugs

Jan 12, 2009

A tiny particle syringe composed of polymer layers and nanoparticles may provide drug delivery that targets diseased cells without harming the rest of the body, according to a team of chemical engineers. This ...

Researcher lights the way to better drug delivery

Sep 08, 2006

A Purdue University researcher has explained for the first time the details of how drugs are released within a cancer cell, improving the ability to deliver drugs to a specific target without affecting surrounding ...

Recommended for you

SANS: a unique technique to look inside plants' leaves

21 hours ago

Plants' leaves capture the sunlight and convert it into the energy used to produce nutrients for their activities. This process is accomplished thanks to the presence of the thylakoid membrane system. While ...

Silver shines as antibacterial for medical implants

Mar 24, 2015

There have been growing concerns in the global health care system about the eradication of pathogens in hospitals and other patient-care environments. Overuse of antibiotics and antimicrobial agents has contributed ...

Fat turns from diabetes foe to potential treatment

Mar 24, 2015

A new weapon in the war against type 2 diabetes is coming in an unexpected form: fat. Researchers have discovered a new class of potentially therapeutic lipids, called fatty-acid esters of hydroxy fatty acids (FAHFAs). These ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.