Strumming on the nano-banjo

Aug 21, 2012 by Angela Herring
Assistant professor Matteo Rinaldi received a DARPA Young Faculty Award to develop infrared and terahertz radiation detection devices. Photo by Brooks Canaday.

When you pluck a banjo string, you trigger a vibra­tion that res­onates at a fre­quency unique to the geom­etry and mate­rial of the string. We can dis­tin­guish that fre­quency as a par­tic­ular pitch, our ears acting like incred­ibly sen­si­tive detectors.

Matteo Rinaldi, an assis­tant pro­fessor of elec­trical and com­puter engi­neering at North­eastern Uni­ver­sity, has recently received a Young Fac­ulty Award from the Defense Advanced Research Projects Agency to develop detec­tion devices that work in a sim­ilar manner—but at a bil­lionth of the size.

In the case of the banjo string, the mechan­ical energy needed to actuate the vibra­tion comes from your finger. But in the case of Rinaldi’s tiny devices, the mech­a­nism of action is bit more com­pli­cated: Elec­trical energy is employed to actuate vibra­tion through a process called piezo­elec­tric transduction.

Rinaldi’s devices resemble two over­lapped ultra-​​thin sheets of paper sta­pled at either end. The top sheet absorbs energy in the form of infrared (IR) and ter­a­hertz (THz) elec­tro­mag­netic radi­a­tion, causing the whole device to heat up. This changes the stiff­ness of the tiny res­o­nant device, which causes it to vibrate at a new fre­quency. The change in fre­quency can be detected with unprece­dented res­o­lu­tion and speed.

The interest for IR and THz tech­nolo­gies has been steadily growing over the last few years because of their poten­tially rev­o­lu­tionary appli­ca­tions span­ning from night vision to med­ical diag­nos­tics. In par­tic­ular, THz radi­a­tion, which falls between the infrared and radio wave regions on the elec­tro­mag­netic spec­trum, has long eluded sci­en­tists in terms of both sources and detec­tion. Rinaldi’s devices rep­re­sent one of the first sys­tems to over­come the detec­tion barrier.

A few detec­tion sys­tems are com­mer­cially avail­able, but they are com­pli­cated and require resource-​​heavy cooling sys­tems to func­tion well. A minia­tur­ized detec­tion tech­nology that can operate at room tem­per­a­ture and dis­tin­guish indi­vidual IR and THz wave­lengths still does not exist.

Rinaldi’s will explore the use of carbon nan­otube forest as the mate­rial in the top sheet. But this is not ideal when looking for spec­tral selec­tivity, because, as Rinaldi said, “carbon nan­otubes are a broad­band absorber.”

With the help of the DARPA YFA award, Rinaldi will also focus on making devices with alter­na­tive top layer com­po­nents. By varying both the mate­rial and the way it is pat­terned, he can create devices that absorb only spe­cific wave­lengths of radiation.

The DARPA pro­posal was Rinaldi’s first after joining the North­eastern fac­ulty in the spring. “It’s a great oppor­tu­nity,” he said. “It has already given me a lot of vis­i­bility. I’ve had the chance to interact with pro­gram man­agers at DARPA and experts in the field.”

The DARPA YFA kick-​​off meeting pro­vided sev­eral exam­ples of how the tech­nolo­gies that have emerged from DARPA grants have made it into the mil­i­tary set­ting, Rinaldi said, giving him the oppor­tu­nity to see how his own research could be applied to solve real world problems.

Explore further: Cold Atom Laboratory creates atomic dance

add to favorites email to friend print save as pdf

Related Stories

3Qs: The fastest man on no legs

Jul 30, 2012

South African double-​​amputee Oscar Pis­to­rius will com­pete in the 400-​​meter sprint at the 2012 London Olympics wearing high-​​tech carbon-​​fiber ...

Fat for better drug function

Aug 09, 2012

Sci­en­tists have long known that food diges­tion affects the way the body absorbs var­ious compounds—from nutri­ents to drugs and toxins.

The risk of carrying a cup of coffee

Jun 15, 2012

Object manip­u­la­tion or tool use is almost a uniquely human trait, said Dagmar Sternad, director of Northeastern’s Action Lab, a research group inter­ested in move­ment coor­di­na­tion. ...

Chipping away at cancer

Jun 25, 2012

(Medical Xpress) -- In the last two decades, the number of deaths from col­orectal cancer has steadily declined, according to the Amer­ican Cancer Society. While some of the decrease can be attrib­uted ...

Recommended for you

Work on pioneering pan-European neutron facility underway

24 minutes ago

A state-of-the-art facility capable of generating neutron beams 30 times brighter than current facilities is about to be constructed in the Swedish town of Lund. The EUR 1.8 billion will help scientists examine ...

Synchrotron upgrade to make X-rays even brighter

2 hours ago

(Phys.org) —The X-rays produced by the Cornell High Energy Synchrotron Source (CHESS) are bright, but they will soon be even brighter, thanks to a major upgrade that will make the quality of CHESS' X-rays ...

Cold Atom Laboratory creates atomic dance

17 hours ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Scientists create possible precursor to life

Oct 20, 2014

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. ...

User comments : 0