Scientists examine effects of manufactured nanoparticles on soybean crops

Aug 20, 2012
These are soybean plants growing in a UCSB greenhouse. Credit: Laurie C. Van De Werfhorst, UCSB

Sunscreens, lotions, and cosmetics contain tiny metal nanoparticles that wash down the drain at the end of the day, or are discharged after manufacturing. Those nanoparticles eventually end up in agricultural soil, which is a cause for concern, according to a group of environmental scientists that recently carried out the first major study of soybeans grown in soil contaminated by two manufactured nanomaterials (MNMs).

The team was led by scientists at UC Santa Barbara's Bren School for & Management. The team is also affiliated with the UC Center for Environmental Implications of Nanotechnology (CEIN), a $24 million collaboration based at UCLA, with researchers from UCSB, UC Davis, UC Riverside, University of Texas at El Paso, Columbia University, and other national and international partners. The results of the study are published this week in the Proceedings of the National Academy of Sciences.

"Our society has become more environmentally aware in the last few decades, and that results in our government and scientists asking questions about the safety of new types of chemical ingredients," said senior author Patricia Holden, a professor with the Bren School. "That's reflected by this type of research."

She explained that the research, which is funded by the National Science Foundation (NSF) and the U.S. Environmental Protection Agency (EPA), is helping to discover potential environmental implications of a new industry that includes nanomaterials. The ultimate goal is to help find more environmentally compatible substitutes, Holden said.

Soybean was chosen for the study due to its importance as a food crop –– it is the fifth largest crop in global agricultural production and second in the U.S. –– and because it is vulnerable to MNMs. The findings showed that crop yield and quality are affected by the addition of MNMs to the soil.

The scientists studied the effects of two common nanoparticles, and cerium oxide, on soybeans grown in soil in greenhouses. Zinc oxide is used in , lotions, and sunscreens. Cerium oxide is used as an ingredient in catalytic converters to minimize carbon monoxide production, and in fuel to increase fuel combustion. Cerium can enter soil through the atmosphere when fuel additives are released with diesel fuel combustion.

The zinc oxide nanoparticles may dissolve, or they may remain as a particle, or re-form as a particle, as they are processed through wastewater treatment. At the final stage of wastewater treatment there is a solid material, called biosolids, which is applied to soils in many parts of the U.S. This solid material fertilizes the soil, returning nitrogen and phosphorus that are captured during wastewater treatment. This is also a point at which zinc oxide and cerium oxide can enter the soil.

Pictured are soybean stem, leaves, bean pods, and roots. The roots contain nodules where bacteria accumulate and convert atmospheric nitrogen into ammonium, which fertilizes the plant. Credit: Patricia Holden

The scientists noted that the EPA requires pretreatment programs to limit direct industrial metal discharge into publicly owned wastewater treatment plants. However, the research team conveyed that "MNMs –– while measurable in the wastewater treatment plant systems –– are neither monitored nor regulated, have a high affinity for activated sludge bacteria, and thus concentrate in biosolids."

The authors pointed out that soybean crops are farmed with equipment powered by fossil fuels, and thus MNMs can also be deposited into the soil through exhaust.

The study showed that plants grown in soil that contained zinc oxide bioaccumulated zinc; they absorbed it into the stems, leaves, and beans. Food quality was affected, although it may not be harmful to humans to eat the soybeans if the zinc is in the form of ions or salts, in the plants, according to Holden.

In the case of cerium oxide, the nanoparticles did not bioaccumulate, but plant growth was stunted. Changes occurred in the root nodules, where symbiotic bacteria normally accumulate and convert atmospheric nitrogen into ammonium, which fertilizes the plant. The changes in the root nodules indicate that greater use of synthetic fertilizers might be necessary with the buildup of MNMs in the soil.

Holden commented on the likelihood of high concentrations of these nanoparticles in agriculture: "There could be hotspots, places where you have accumulation, including near manufacturing sites where the materials are being made, or if there are spills. We have very limited information about the quantity or state of these synthetic nanomaterials in the environment right now. We know they're being used in consumer goods, and we know they're going down the drain."

Explore further: Dog waste contaminates our waterways: A new test could reveal how big the problem is

More information: “Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption,” by John H. Priester et al. PNAS.

Related Stories

Australians risking skin cancer to avoid nanoparticles

Feb 09, 2012

More than three in five Australians are concerned enough about the health implications of nanoparticles in sunscreens to want to know more about their impact. And while the initial scientific information released suggests ...

Synthetic nano-waste does not disappear

May 25, 2012

(Phys.org) -- Tiny particles of cerium oxide do not burn or change in the heat of a waste incineration plant. They remain intact on combustion residues or in the incineration system, as a new study by Swiss ...

Safety of nanoparticles in food crops is still unclear

Jun 01, 2011

With the curtain about to rise on a much-anticipated new era of "nanoagriculture" — using nanotechnology to boost the productivity of plants for food, fuel, and other uses —scientists are reporting a huge gap in ...

Recommended for you

Report IDs 'major weaknesses' at nuclear-arms lab

6 hours ago

One of the nation's premier nuclear weapons laboratories is being called out by the inspector general of the U.S. Department of Energy for "major weaknesses" in the way it packaged contaminated waste before shipping it to ...

User comments : 0