Scientists advance understanding of how flowers are formed

Aug 12, 2012

(Phys.org) -- Scientists from the Smurfit Institute of Genetics at Trinity College Dublin have made a significant breakthrough in understanding the genetic processes underlying flower development. The research funded by Science Foundation Ireland has just been published in the leading international journal, Proceedings of the National Academy of Sciences (PNAS).

Lead authors of the study are Dr Samuel Wuest and Dr Diarmuid O’Maoileidigh, who carried out the research in the Plant Developmental Genetics laboratory of the Smurfit Institute of Genetics, which is headed by Assistant Professor Frank Wellmer.

Flowers and the seeds and fruits that they produce are important sources of food and energy and are therefore of great economical importance. How flowers are formed has been studied intensively over the past three decades and many genes that are involved in this important biological process have been identified, especially in the small weed Arabidopsis thaliana. Arabidopsis belongs to the mustard family and is closely related to agriculturally important plants such as oilseed rape and cauliflower and is widely used by researchers for studying the biological processes underlying plant growth and development.

Flowers are typically composed of four different types of floral organs: sepals, petals, stamens and carpels. The development of these organ types is controlled by a small number of master regulatory genes, the so-called floral organ identity genes. Using state-of-the-art experimental approaches, the Trinity researchers have identified the processes that are regulated by some of these genes.

Commenting on the significance of the findings, Professor Wellmer said: “For almost two decades we have wondered how the floral organ identity genes control the development of floral organs. Our new findings provide detailed insights into their activities as well as opened up new avenues for investigation. This is an exciting step forward for our understanding of how flowers form. Ultimately, we may be able to use this information to generate crops with higher yields or improved traits.”

Explore further: Study finds new links between number of duplicated genes and adaptation

More information: The full title of the paper is: ‘Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA’

Related Stories

A small leak will sink a great ship

Jun 26, 2007

During flowering four different types of floral organs need to be formed: sepals, which protect the inner organs; the frequently ornamental petals; stamens, which produce pollen and the carpels. This process ...

Genetics in bloom

Jun 24, 2010

Some of the molecular machinery that governs flower formation has been uncovered in the daisy-like Gerbera plants. Researchers writing in the open access journal BMC Plant Biology have published a pair of art ...

What 'pine' cones reveal about the evolution of flowers

Dec 13, 2010

(PhysOrg.com) -- From southern Africa's pineapple lily to Western Australia's swamp bottlebrush, flowering plants are everywhere. Also called angiosperms, they make up 90 percent of all land-based, plant ...

A novel explanation for a floral genetic mystery

Jan 16, 2009

Scientists at the University of Jena, Germany have put forth a novel explanation of the evolutionary driving force behind a genetic switching circuit that regulates flower development and survival. The hypothesis, based around ...

Development of keeled flowers

Mar 25, 2011

A study using scanning electron microscopy has revealed that the keeled petals of Leguminosae and Polygalaceae are fundamentally different.

Recommended for you

Chrono, the last piece of the circadian clock puzzle?

13 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

13 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

Research traces the genetic print of the Asturian people

21 hours ago

The DNA of the people of Asturias still maintains the genetic prints of remote ages. A research conducted at the University of Oviedo proves that the old frontiers marked by the pre-Roman Astur settlements have left their ...

User comments : 0

More news stories

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.