The role of H3K9 in bringing order to the nucleus

Aug 31, 2012
Each progressive state of modification on H3K9 provided a signal that triggered the transfer of the modified nucleosomes to the nuclear envelope.

(—Scientists from the Friedrich Miescher Institute for Biomedical Research have elucidated the histone modifications that lead to the sequestration of silent genes at the nuclear periphery. In a study published in the latest issue of Cell they show that at least two levels of histone H3 lysine 9 methylation trigger the anchoring of heterochromatin to the nuclear envelope.

The is a hotbed of activity, in which DNA and numerous species of RNA are implicated in gene expression, genome duplication and repair, as well as the regulation of these essential processes. The organization of DNA into chromatin, which entails the folding of long DNA fibers around bead-like units containing 8 , is the defining feature of the eukaryotic genome. Once organized into these nucleosomes, chromatin can be compacted into condensed chromosomal structures, or unfolded to allow enzymes to act on their DNA substrate. Chromatin-controlled access to the DNA fiber regulates essentially all functions of the genome in a .

Intriguingly, as differentiate to form a multicellular organism, regions of the genome become packaged into compact silent domains, called heterochromatin. The total amount of heterochromatin in the cell increases as pluripotent differentiate into restricted cell types. Different genes are repressed in different tissues. The silent domains also become spatially segregated from the transcriptionally active ones, being shifted to the periphery of the nucleus. This spatial segregation of active and inactive domains of the genome is conserved in . The Gasser laboratory at the Friedrich Miescher Institute for Biomedical Research studies the physiological implications of this spatial organization. They have now elucidated in the worm C. elegans how the sequestration of genes at the nuclear periphery is achieved.

Benjamin Towbin, during the course of his PhD studies in Susan Gasser's laboratory, found that an enzyme called SAM synthetase, which generates the universal donor for lysine methylation, S-adenosylmethionine (SAM), is critical for the proper spatial segregation of chromatin in the nucleus. When he interfered with SAM synthesis he observed a strong drop in histone methylation, activation of what should have been silent genes in a heterochromatic context, and loss of their sequestration at the nuclear edge.

Assuming that the methylation of specific lysines within histones might be the signal for heterochromatin sequestration, Towbin then went on to determine which of the many enzymes that transfer a from SAM to a histone substrate, were necessary for heterochromatin anchoring. He identified two histone methyltransferases (HMTs), which act sequentially to generate a trimethylated lysine 9 in histone H3: MET-2 is a homologue of the mammalian SET DB1 enzyme, and deposits the first and second methyl group on this specific residue, while a new HMT, SET-25, was able to deposit the third methyl group, generating H3K9me3. Each progressive stage of modification, the mono-, di- and tri-methylated forms of H3K9, provided a signal that triggered the transfer of the modified nucleosomes to the . Intriguingly, mono- and di-methylated nucleosomes were not transcriptionally silent, but were necessary for the tri-methylation mark, which then closed down expression and sealed the bond to the periphery.

Towbin and colleagues could further show that SET-25 co-localizes with peripheral heterochromatin bearing tri-methylated H3K9. SET-25 is thus sequestered at the nuclear periphery by the product of its own methylation reaction. "We believe that SET-25 accumulates at the nuclear periphery to promote heterochromatic repression of the genes that are brought there due to deposition of the mono- and di-methyl marks. This also ensures that is targeted by the SET-25 enzyme as the chromatin replicates, an event that would favor the propagation of both a repressed state and its spatial positioning," says Towbin.

Although the results were gained in the model organism C. elegans, mammalian homologues exist for the identified proteins and similar processes have been described in mammalian cells, albeit in less detail. "The analogies to mammalian silencing suggest that the principles identified here are relevant from worms to man," said Gasser.

Explore further: Researchers discover new strategy germs use to invade cells

More information: Towbin BD, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser SM (2012) Step-wise methylation of histone H3K9 positions chromosome arms at the nuclear periphery in C. elegans embryos. Cell 150:934-947

Related Stories

Histone modifications control accessibility of DNA

Jul 14, 2010

( -- n an advanced online publication in Nature Structural & Molecular Biology scientist from Dirk Schübeler's group from the Friedrich Miescher Institute for Biomedical Research provide a geno ...

Regulating the nuclear architecture of the cell

Dec 10, 2006

An organelle called the nucleolus resides deep within the cell nucleus and performs one of the cell's most critical functions: it manufactures ribosomes, the molecular machines that convert the genetic information ...

Silence of the genes

Jul 22, 2011

A molecular mechanism by which gene silencing is regulated at the genome-wide level in plants has been uncovered by a research team led by Motoaki Seki of the RIKEN Plant Science Center, Yokohama, Japan. ...

Core tenets of the 'histone code' are universal

Sep 06, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

Work with fungus uncovering keys to DNA methylation

Dec 15, 2008

Researchers in a University of Oregon lab have shed more light on the mechanism that regulates DNA methylation, a fundamental biological process in which a methyl group is attached to DNA, the genetic material in cells of ...

Recommended for you

Some anti-inflammatory drugs affect more than their targets

48 minutes ago

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved ...

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0