Research reveals unique solution to gene regulation

Aug 21, 2012

Research on a unique vertebrate called the sea lamprey shows that more than a thousand genes are shed during its early development. These genes are paradoxically lost all throughout the developing embryo except in a specialized compartment called "primordial germ cells" or PGCs. The PGCs can be thought of as embryonic stem cells and are used, ultimately, for making the next generation of lampreys. Based on computational analysis, a significant number of genes that are lost in the embryo have signatures of "pluripotency," which suggests that they could also have undesirable effects if they were inadvertently turned on in the body. In effect, by undergoing programmed genome rearrangement and gene loss during embryogenesis, the sea lamprey "seals" the genes away in the small germline compartment so they cannot be misexpressed and thereby create untoward problems (such as development of cancer, for example).

The study was completed at the Benaroya Research Institute at Virginia Mason (BRI) and recently published as a featured article in , along with an outside commentary highlighting its biological importance.

The article authors are Jeramiah Smith, PhD, former postdoctoral fellow at BRI and now Assistant Professor of Biology at the University of Kentucky; Chris Amemiya, PhD, Principal Investigator at BRI and Professor of Biology, University of Washington; Evan Eichler, PhD, University of Washington Genome Sciences Professor; and Carl Baker, Research Scientist, University of Washington.

The discovery builds on the group's previous work published in the in 2009. "Our new research confirms that experience rampant programmed genome rearrangement and losses during early development," says Dr. Amemiya. "The genes are restricted to the germline compartment suggesting a deeper biological strategy in order to regulate the genome for highly precise, normal functioning. The strategy removes the possibility that the genes will be expressed in deleterious ways. Humans, on the other hand, must contain these genes through other "epigenetic" mechanisms that are not fool-proof.

There are several implications of this work:

  • By understanding how programmed genome arrangement occurs so pervasively in lampreys, scientists can gain insight into how vertebrate genomes can remain stable and what genetic factors contribute to this stability.
  • Studies in distantly related species can provide unique insights into fundamental biological concepts and may be translatable to human health.
  • Identifying the molecular and developmental mechanism of how lampreys regulate their genome may have implications for disease treatment.
Sea lampreys are "basal" vertebrates that lack jaws and have unique properties that are of interest to scientists. This includes a completely different genetic toolkit for their adaptive immune system, which was also discovered, in part, by Amemiya's group, as well as remarkable powers of regeneration that allow them to completely recover from a severed spinal cord.

High throughput genomic sequencing, computational analysis and other state-of-the-art scientific advances made this research possible. Grant funding was provided by the National Science Foundation, National Institutes of Health and Howard Hughes Medical Institute.

Explore further: Geneticists solve 40-year-old dilemma to explain why duplicate genes remain in the genome

add to favorites email to friend print save as pdf

Related Stories

Sea lampreys jettison one-fifth of their genome

Jul 20, 2009

(PhysOrg.com) -- Researchers have discovered that the sea lamprey, which emerged from jawless fish first appearing 500 million years ago, dramatically remodels its genome. Shortly after a fertilized lamprey ...

'Junk DNA' uncovers the nature of our ancient ancestors

Oct 20, 2010

The key to solving one of the great puzzles in evolutionary biology, the origin of vertebrates -- animals with an internal skeleton made of bone -- has been revealed in new research from Dartmouth College ...

Ancient Chinese lampreys are studied

Jun 21, 2006

The fossilized remains of two tiny freshwater lampreys have been found in Inner Mongolia, China, each about 125 million years old.

Lampreys give clues to evolution of immune system

Feb 02, 2011

Biologists have discovered that primitive, predatory lampreys have structures within their gills that play the same role as the thymus, the organ where immune cells called T cells develop in mammals, birds and fish.

Recommended for you

MaxBin: Automated sorting through metagenomes

Sep 29, 2014

Microbes – the single-celled organisms that dominate every ecosystem on Earth - have an amazing ability to feed on plant biomass and convert it into other chemical products. Tapping into this talent has ...

User comments : 0