Researchers collect and reuse enzymes while maintaining bioactivity

Aug 08, 2012

Clemson University researchers are collecting and harvesting enzymes while maintaining the enzyme's bioactivity. Their work, a new model system that may impact cancer research, is published in the journal Small.

Enzymes are round proteins produced by that increase the rate of chemical reactions.

"We found a robust and simple way of attracting specific enzymes, concentrating them and reusing them," said Stephen Foulger, professor in the School of Materials Science and Engineering at Clemson. "The enzymes are still functional after being harvested."

Isolating a single type of protein from a complex mixture is the most difficult aspect of the purification process. It is vital to determine the function, structure and interactions of the protein.

The researchers baited a nanoparticle to capture and recycle an enzyme. They found a way to attach an enzyme's on the surface of a particle, allow the enzyme to bind to it, remove the particle and determine that the enzyme is still functional.

"We took a protein that was being produced in a soil and placed its food source on the outside of a nanoparticle and the protein essentially grabbed onto the ," said Foulger. "We froze the enzyme in place and removed the particle and thus found a commercially viable way to harvest these proteins."

"This baited particle approach provides a very efficient means for isolating complex enzyme systems for use in biotechnology," said Vincent Rotello, a chemistry professor at the University of Massachusetts Amherst and leading researcher in the field. "This method also provides considerable promise for ."

The research established a universal model for concentrating and extracting known enzyme pairings, but it can be an invaluable tool in recognizing unknown ones.

"This model is foreshadowing for what we're doing with cancer research because we're beginning to focus on the 'outside' of to sequester specific proteins that direct cancer cell growth," said Foulger.

The researchers' goal is to alter the cellular concentration of critical proteins in cancer to disrupt the cell's ability to spread, thereby controlling its growth in the body.

Explore further: Structure of sodium channels different than previously believed

Related Stories

New protein structure model to inhibit cancer

Jul 29, 2011

Researchers at the University of Hertfordshire have developed a new structural model of a protein, which makes it possible to develop more effective drugs to target diseases such as cancer, heart disease and influenza.

Unlocking the function of enzymes

Nov 06, 2007

Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the ...

Opening and closing the genome

Feb 22, 2007

At any given time, most of the roughly 30,000 genes that constitute the human genome are inactive, or repressed, closed to the cellular machinery that transcribes genes into the proteins of the body. In an average cell, only ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...