Researchers provide answers to questions about relaxors

Aug 07, 2012

(Phys.org) -- University of Arkansas physicists and their colleagues have determined important information about the nanoscale properties of materials called relaxors, which can be used in electronic devices to change temperature or shape. The discoveries may help maximize efficient use of relaxors to create better medical ultrasound, sensors and heart implants.

Scientists Sergey Prosandeev and Laurent Bellaiche, from the University of Arkansas?  with A. Akbarzadeh of Rice University, Eric Walter of the College of William and Mary and A. Al-Barakaty of Umm Al-Qura University in Makkah, Saudi Arabia report their findings in the current issue of Physical Review Letters.

You can find the materials known as relaxors in many everyday appliances, in life-saving heart implants and in most . But despite their wide use, “we still didn’t have a realistic theory of how these things work,” Prosandeev said.

Transitions in the polarity of relaxors seem disorderly, which would make them difficult to control. However, Prosandeev and his colleagues wondered if order might lie beneath the disorder.

The researchers performed calculations on a certain type of relaxor, barium zirconium titanium oxide, Ba(Zr,Ti)O3. They found that the relaxor stopped being polarized at higher temperatures. Meanwhile, the material developed nanoregions with the same polarities at lower temperatures. They also showed that this happens because of competition between opposite effects, such as differences in the way titanium ions and zirconium ions want to move or stay in non-polar positions. Another struggle between opposites involves ferroelectric interactions at short distances versus antiferroelectric interactions at larger distances between the titanium atoms. At low temperatures, the changes in position of titanium atoms are parallel to each other within small polar nanoregions. At higher temperatures, the changes in position of titanium atoms are mostly random, which make the polarity disappear.

The researchers also resolved a long-standing controversy about the role of these random polar nanoregions in relaxors. Using their model, they could switch off and on the random fields and examine their effect on the properties of the material. They found that, contrary to what scientists thought previously, turning off random fields did not affect the relaxor’s behavior at different temperatures.

Understanding these properties will allow researchers better control over the materials’ properties, which will in turn make for better materials for everyday life.

Explore further: Pseudoparticles travel through photoactive material

Related Stories

Magnetic Vortex Switch Leads to Electric Pulse

Apr 08, 2009

(PhysOrg.com) -- Researchers at the University of Arkansas have shown that changing the chirality, or direction of spin, of a nanoscale magnetic vortex creates an electric pulse, suggesting that such a pulse might be of use ...

Discovery might improve titanium alloys

Oct 20, 2005

Two University of Maryland scientists say they've developed a modification of titanium alloys that will expand their uses and make them safer.

Graphene boosts efficiency of next-gen solar cells

Apr 24, 2012

(Phys.org) -- The coolest new nanomaterial of the 21st century could boost the efficiency of the next generation of solar panels, a team of Michigan Technological University materials scientists has discovered.

Mediating magnetism

May 04, 2011

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.