Researchers provide answers to questions about relaxors

Aug 07, 2012

(Phys.org) -- University of Arkansas physicists and their colleagues have determined important information about the nanoscale properties of materials called relaxors, which can be used in electronic devices to change temperature or shape. The discoveries may help maximize efficient use of relaxors to create better medical ultrasound, sensors and heart implants.

Scientists Sergey Prosandeev and Laurent Bellaiche, from the University of Arkansas?  with A. Akbarzadeh of Rice University, Eric Walter of the College of William and Mary and A. Al-Barakaty of Umm Al-Qura University in Makkah, Saudi Arabia report their findings in the current issue of Physical Review Letters.

You can find the materials known as relaxors in many everyday appliances, in life-saving heart implants and in most . But despite their wide use, “we still didn’t have a realistic theory of how these things work,” Prosandeev said.

Transitions in the polarity of relaxors seem disorderly, which would make them difficult to control. However, Prosandeev and his colleagues wondered if order might lie beneath the disorder.

The researchers performed calculations on a certain type of relaxor, barium zirconium titanium oxide, Ba(Zr,Ti)O3. They found that the relaxor stopped being polarized at higher temperatures. Meanwhile, the material developed nanoregions with the same polarities at lower temperatures. They also showed that this happens because of competition between opposite effects, such as differences in the way titanium ions and zirconium ions want to move or stay in non-polar positions. Another struggle between opposites involves ferroelectric interactions at short distances versus antiferroelectric interactions at larger distances between the titanium atoms. At low temperatures, the changes in position of titanium atoms are parallel to each other within small polar nanoregions. At higher temperatures, the changes in position of titanium atoms are mostly random, which make the polarity disappear.

The researchers also resolved a long-standing controversy about the role of these random polar nanoregions in relaxors. Using their model, they could switch off and on the random fields and examine their effect on the properties of the material. They found that, contrary to what scientists thought previously, turning off random fields did not affect the relaxor’s behavior at different temperatures.

Understanding these properties will allow researchers better control over the materials’ properties, which will in turn make for better materials for everyday life.

Explore further: New research predicts when, how materials will act

Related Stories

Magnetic Vortex Switch Leads to Electric Pulse

Apr 08, 2009

(PhysOrg.com) -- Researchers at the University of Arkansas have shown that changing the chirality, or direction of spin, of a nanoscale magnetic vortex creates an electric pulse, suggesting that such a pulse might be of use ...

Discovery might improve titanium alloys

Oct 20, 2005

Two University of Maryland scientists say they've developed a modification of titanium alloys that will expand their uses and make them safer.

Graphene boosts efficiency of next-gen solar cells

Apr 24, 2012

(Phys.org) -- The coolest new nanomaterial of the 21st century could boost the efficiency of the next generation of solar panels, a team of Michigan Technological University materials scientists has discovered.

Mediating magnetism

May 04, 2011

(PhysOrg.com) -- Titanium oxide doped with cobalt produces magnetic properties at room temperature via a newly discovered mechanism.

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.