Researchers grow regularly-ordered nanometer-scale crystalline thin film using 3D porous material

Aug 29, 2012

A joint research group consisting of the Japan Synchrotron Radiation Research Institute (JASRI located at the SPring-8 site), Kyoto University, and the National Institute for Materials Science (NIMS) succeeded in fabricating a crystalline thin film with a film thickness of nanometer order, in which molecules of a 3-dimensionally strong porous coordination polymer (hereinafter, PCP) are arranged (oriented) in a designated direction, and demonstrated that this thin film has a reversible gas adsorption/desorption reaction function.

A variety of functions can be expected with PCP, which possesses high gas adsorption characteristics and high (crystallinity), including separation and concentration of , reaction in the interiors of the , etc. For this reason, it is possible to fabricate various types of energy related devices, such as high efficiency fuel cells, etc., by integrating PCP having different functions. When constructing devices of this type, fabrication in which the orientations of the crystals in multiple PCP films are aligned, in other words, oriented growth, is necessary and indispensable for integration of different types of PCP with tight adhesion. However, until now, oriented growth had only been successful with planarly-rigid PCP. In order to realize diverse functions, durability of the fabricated device, and adhesion between different types of PCP during integration, a technology which enables oriented growth of crystals of PCP with 3-dimensional rigidity had been desired.

In this work, the joint research group succeeded in fabrication of a 3-dimensional PCP nanometer scale thin film in which oriented growth was realized by selection of an appropriate substrate for oriented growth, surface processing of that substrate, and selection of a metal-organic framework (MOF) material that enables control of the growth direction while also displaying 3-dimensional rigidity. In addition to the fact that a reversible gas adsorption- occurs in this nanometer scale thin film, the rigidity of the thin film was also confirmed, meaning that adsorption-desorption reaction can be performed without accompanying changes in the frame structure. The oriented growth of these nanometer scale thin films and structural changes during adsorption and desorption could be confirmed for the first time in detailed diffraction experiments using the brilliant X-rays at the SPring-8.

Because these research results will provide the basic technology for fabrication of new functional devices by integration of PCP with different functions, it is expected that research and development on functional devices using nanometer scale thin films and application to high performance in fuel cells, etc. will be greatly accelerated.

Explore further: Thinnest feasible nano-membrane produced

More information: The original paper in connection with these research results was published in the June 13 edition of the Journal of the American Chemical Society. See: pubs.acs.org/doi/abs/10.1021/ja304361v

add to favorites email to friend print save as pdf

Related Stories

Flexibility: The key to carbon capture

Aug 12, 2011

From power plants that capture their own carbon dioxide emissions to vehicles powered by hydrogen, clean energy applications often demand materials that can selectively adsorb large volumes of harmful gases. ...

PCP genetic pathway acts as stop sign for cell growth

Mar 15, 2012

The genetic pathway that regulates the way cells align themselves relative to each other has been found to act as a "stop sign" that signals organisms when to halt cell growth, according to new research published ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...