Proteins feel long-range attractive forces

Aug 30, 2012 by Anne Ju
Living cell membranes are poised to separate into two components (blue and white), leading to fractal-like patterns of each. Image: Ben Machta

(Phys.org)—Proteins embedded in the lipid membranes of cells feel long-range attractive forces in specific patterns that mediate the proteins' behavior—for example, assisting in the clumping sequences in response to allergens, such as pollen, that eventually lead to the inevitable sneeze.

Cornell physicists have identified the physical mechanisms behind these protein attractions, which are set off by changes in cellular membranes. Their research, led by professor of physics Jim Sethna, has been accepted for publication in Physical Review Letters.

The researchers were inspired by a recent discovery that cell membranes can separate into two liquid phases, much like oil and water, in fractal-like patterns. The physical fluctuations that result lead to remarkably long-range attractions between certain proteins, depending on the fractal patterns.

These changes take place at the so-called critical point of the liquid- separation of the cell membrane, which is the subtle temperature and composition point at which the two phases separate. The proteins sitting in this membrane, at this critical point, are able to feel forces 20 nanometers apart, the physicists predict—a notable distance at those scales.

"We were intrigued that it seems like biology does want to tune itself closely to this critical point," said graduate student and co-author Ben Machta.

The experiments built on previous work by former postdoctoral associate and co-author Sarah Veatch, who had studied cellular membranes of and demonstrated their liquid-liquid phase separations.

The work was supported by the National Science Foundation and the National Institutes of Health.

Explore further: New technique reveals immune cell motion through variety of tissues

Related Stories

Cell membranes behave like cornstarch and water

Nov 03, 2010

(PhysOrg.com) -- Surprising discovery by physicists at the University of Oregon overturns a long-held belief, and raises fresh new scientific questions about the biology that regulates lipid and protein mobility.

Driving membrane curvature

Jun 14, 2012

(Phys.org) -- In biological systems, membranes are as important as water. They form the barrier between the inner world, within our cells, where we perform the chemical reactions of life, and the outside environment.

Recommended for you

'Global positioning' for molecules

Dec 19, 2014

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

Cells build 'cupboards' to store metals

Dec 17, 2014

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.