Proteins feel long-range attractive forces

Aug 30, 2012 by Anne Ju
Living cell membranes are poised to separate into two components (blue and white), leading to fractal-like patterns of each. Image: Ben Machta

(Phys.org)—Proteins embedded in the lipid membranes of cells feel long-range attractive forces in specific patterns that mediate the proteins' behavior—for example, assisting in the clumping sequences in response to allergens, such as pollen, that eventually lead to the inevitable sneeze.

Cornell physicists have identified the physical mechanisms behind these protein attractions, which are set off by changes in cellular membranes. Their research, led by professor of physics Jim Sethna, has been accepted for publication in Physical Review Letters.

The researchers were inspired by a recent discovery that cell membranes can separate into two liquid phases, much like oil and water, in fractal-like patterns. The physical fluctuations that result lead to remarkably long-range attractions between certain proteins, depending on the fractal patterns.

These changes take place at the so-called critical point of the liquid- separation of the cell membrane, which is the subtle temperature and composition point at which the two phases separate. The proteins sitting in this membrane, at this critical point, are able to feel forces 20 nanometers apart, the physicists predict—a notable distance at those scales.

"We were intrigued that it seems like biology does want to tune itself closely to this critical point," said graduate student and co-author Ben Machta.

The experiments built on previous work by former postdoctoral associate and co-author Sarah Veatch, who had studied cellular membranes of and demonstrated their liquid-liquid phase separations.

The work was supported by the National Science Foundation and the National Institutes of Health.

Explore further: Digestive brilliance of breast milk unravelled

Related Stories

Cell membranes behave like cornstarch and water

Nov 03, 2010

(PhysOrg.com) -- Surprising discovery by physicists at the University of Oregon overturns a long-held belief, and raises fresh new scientific questions about the biology that regulates lipid and protein mobility.

Driving membrane curvature

Jun 14, 2012

(Phys.org) -- In biological systems, membranes are as important as water. They form the barrier between the inner world, within our cells, where we perform the chemical reactions of life, and the outside environment.

Recommended for you

Scientists find clues to cancer drug failure

Mar 02, 2015

Cancer patients fear the possibility that one day their cells might start rendering many different chemotherapy regimens ineffective. This phenomenon, called multidrug resistance, leads to tumors that defy ...

Oat breakfast cereals may contain a common mold-related toxin

Feb 25, 2015

Oats are often touted for boosting heart health, but scientists warn that the grain and its products might need closer monitoring for potential mold contamination. They report in ACS' Journal of Agricultural and Food Chemistry that s ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.