Two proteins that regulate cell division co-operate to control neuronal differentiation

August 2, 2012

Researchers from the A*STAR Institute of Molecular and Cell Biology have identified components of the molecular mechanism that stops neural stem cells from dividing and then promotes their differentiation into different types of brain cells. During development of the nervous system, proteins called cyclin-dependent kinases (Cdks) tightly regulate the balance between the proliferation and differentiation of neural stem cells, but the exact role of each Cdk in these processes is not well understood.

To investigate the function of these proteins, the Kaldis laboratory generated lacking the genes encoding Cdk2 and Cdk4, both of which are known to be involved in regulating cell division. The mutant animals died of at around the fifteenth day of embryonic development, and had that shed light on the role of Cdk2 and Cdk4 in neural development.

Lim and Kaldis examined the brains of the mutant animals and found that they had a larger hindbrain and enlarged cerebral ventricles compared to normal mice (see image). They also had a thinner neocortex, which lacked the usually distinct boundaries between cell layers. Closer examination revealed that the ventricular zone, which contains dividing stem cells, was unaffected, but that the neuronal layers were diminished by about 46%.

The researchers then isolated neural stem cells from the brains of the mutant and normal animals, and used antibody staining to examine the genes that they express. Cells from both types of animals expressed genes required for self-renewal, suggesting that deleting the Cdk2 and Cdk4 genes does not alter stem cell characteristics.

Although the proliferation of neural stem cells from the mutants was largely unaffected, the cells were more prone to spontaneous differentiation after an extended period in culture compared to those from normal animals. Further experiments indicated that this enhanced differentiation is largely due to alterations in cell division, so that the interval between each round of division is increased.

This may extend the time period over which chemical signals that induce differentiation can act on the cells. The absence of Cdk2 and Cdk4 may also cause an altered biochemical state that primes the stem cells to differentiate into neurons. Together, these results suggest that a high level of Cdk activity favours self-renewal of neural and discourages them from differentiating.

“We are currently analysing a particular substrate of Cdks in to determine the molecular mechanism of our observation,” says Kaldis.

Explore further: New study hopeful on neural stem cells

More information: Lim, S. & Kaldis, P. Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells 30, 1509–1520 (2012). dx.doi.org/10.1002/stem.01114
Berthet, C. et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Developmental Cell 10, 563–573 (2006). dx.doi.org/10.1016/j.devcel.2006.03.004

Related Stories

New study hopeful on neural stem cells

August 5, 2006

Neural stem cells derived from federally approved human embryonic cells are inferior to stem cells derived from donated fetal tissue, a new study found.

Identification of a novel neural stem cell type

January 14, 2008

As published in the upcoming issue of G&D, sesearchers from the Sloan-Kettering Institute, led by Dr. Lorenz Studer, have discovered a novel type of neural stem cell, which has a broader differentiation potential than previously ...

What decides neural stem cell fate?

May 5, 2011

Researchers at Sanford-Burnham Medical Research Institute and their collaborators found that expression of a gene called SOX2 maintains the potential for neural crest stem cells to become neurons in the peripheral nervous ...

Recommended for you

Head and body lice read DNA differently

July 28, 2015

What makes head lice different from body lice had scientists scratching their heads as previous genetic studies failed to find any substantial differences between the two types of lice.

Plant light sensors came from ancient algae

July 28, 2015

The light-sensing molecules that tell plants whether to germinate, when to flower and which direction to grow were inherited millions of years ago from ancient algae, finds a new study from Duke University.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.