New protein discovered gives insights to iron's fate underground

August 20, 2012
Proposed roles of MtoAB and CymAES-1 in Sideroxydans lithotrophicus ES-1-mediated extracellular Fe(II) oxidation. Decaheme c-Cyt MtoA, which is inserted into the porin-like, outer membrane (OM) protein MtoB, oxidizes Fe(II) directly on the bacterial surface and transfers the released electrons across the OM to the periplasmic proteins that have yet to be identified. The periplasmic proteins relay the electrons through the periplasm (PS) to the tetraheme c-Cyt CymAES-1. CymAES-1, located in the cytoplasmic or inner membrane (IM), reduces quinone to quinol. c-Cyts are labeled in red, and the direction of electron transfer is indicated by a yellow arrows.

(Phys.org) -- It's almost an evil twin story: a protein that steals electrons from iron in one microbe looks a lot like one that adds electrons in another microbe, according to scientists at Pacific Northwest National Laboratory and the University of East Anglia. Their survey of the genes of common groundwater bacterium Sideroxydans lithotrophicus ES-1, which removes electrons from iron, revealed that it contained genes in common with Shewanella oneidensis MR-1, which adds electrons to iron.

Their results contribute to understanding of the by which microorganisms change the electron configuration of and, thus, change its mobility. The research was published in Frontiers in Microbiological Chemistry.

"Recent studies indicate that aerobic Fe(II)-oxidizing bacteria, FeOB, would play a key role in niches having low levels of , where microbial Fe(II)-oxidation can compete with the chemical oxidation of Fe(II)," said PNNL biogeochemist Dr. Juan Liu, first author of the study paper.

Science has realized the importance of microorganisms in research on processes such as , the generation of , and the movement and ultimate resting place of contaminants. Scientists are interested in the , or loss of electrons, of iron because it dramatically affects the metal's solubility in water, in which electron transfer proteins play critical roles. In contrast to Fe(II), trivalent iron, Fe(III), is not water soluble.

The difference in solubility between Fe(II) and Fe(III) also means that iron acquisition tends to be much more of a problem for organisms that use oxygen than for those that don't, because favor the more soluble Fe(II).

"We have shown the generality of these reaction mechanisms in metal oxidizing and reducing bacteria," said Dr. Liang Shi, a PNNL microbiologist who led the study. "Whether it's Fe(II) or Fe(III), iron's solubility affects its accessibility to microorganisms. To access these different phases of Fe, some microorganisms seem to adopt a common mechanism."

The research team used integrated bioinformatics analyses, gene cloning, protein expression and purification, and in vitro and in vivo characterization on the ES-1 sample. Characterizations were conducted by using different experimental tools, such as complementation testing in MR-1, stopped-flow kinetics, and protein film cyclic voltammetry.

They found a three-gene cluster encoding homologs of MR-1. The MR-1 genes are called MtrA, MtrB, and CymAt, so to distinguish the ES-1 genes, the scientists named them MtoAB and CymAES-1.

From this cluster, they identified, purified, and characterized MtoA, a hemoprotein important for extracellular electron transfer reactions. MtoA is the first member of its specific family of proteins to be purified and characterized from an Fe(II)-oxidizing bacterium.

The scientists are planning to investigate to what extent these proteins are distributed among other Fe(II)-oxidizing bacteria.

Explore further: Scientists Show How Bacteria Move Electrons Across a Membrane

More information: J Liu, et al.. 2012. "Identification and Characterization of MtoA: A Decaheme c-type Cytochrome of the Neutrophilic Fe(II)-oxidizing Bacterium Sideroxydans lithotrophicus ES-1." Frontiers in Microbiological Chemistry 3:37. DOI:10.3389/fmicb.2012.00037

Related Stories

Iron-nitrogen compound forms strongest magnet known

March 22, 2010

(PhysOrg.com) -- A group of scientists from the University of Minnesota say that Fe16N2 crystals are more magnetic than the most magnetic material previously known, and its magnetism exceeds the predicted limit of magnetism ...

Insect gut microbe with a molecular iron reservoir

September 1, 2011

Microbes are omnipresent on earth. They are found as free-living microorganisms as well as in communities with other higher organisms. Thanks to modern biological techniques we are now able to address the complex communities ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.