Research shows how protein component that enables cell replication gets ferried to chromosome tips

August 2, 2012

Stem cells are special. Nestled in muscle and skin, organ and bone, they bide their time over years or decades until called to replace damaged or lost tissue. One secret to their longevity is an enzyme called telomerase, which stills the relentless ticking of the molecular clock that limits the life span of other cells.

This cellular prevents the progressive shortening of the tips of our that occurs with each cell division. But the presence of telomerase can be a double-edged sword: The same activity that ensures long life for can also keep a cancer cell dividing long after its aging neighbors have thrown in the towel. Conversely, a malfunction can prevent stem from doing their job and lead to devastating diseases.

Now, for the first time, researchers at the Stanford University School of Medicine have identified how telomerase is recruited to — and figured out a way to block it.

"If telomerase is unable to maintain the ends of the chromosomes, cells will stop multiplying," said professor of medicine Steven Artandi, MD, PhD. "This would be advantageous in , but in normal stem cells it can cause severe dysfunction and lead to diseases such as pulmonary fibrosis, aplastic anemia and a genetic condition called dyskeratosis congenita. We want to understand how telomerase works, and to develop therapies for cancer and these other diseases."

Artandi is the senior author of the research, which will be published Aug. 3 in Cell. He is also a member of the Stanford Cancer Institute. Graduate student Franklin Zhong is the first author of the study.

Telomerase is normally expressed in adult stem cells and immune cells, as well as in cells of the developing embryo. In these cells, the enzyme caps off the ends of newly replicated chromosomes, allowing unfettered cell division. Without telomerase, cells stop dividing or die when the ends — called telomeres — fall below a minimum length. Unfortunately, the enzyme is also active in nearly all cancer cells.

Earlier research in Artandi's lab identified a protein called TCAB1 that brings the telomerase complex (actually a large clump of many proteins) to a processing area in the cell's nucleus called a Cajal body. But no one knew how the complex was then ferried to the ends of telomeres, and research was stymied by the complex's large size, multiple components and relative scarcity.

"This problem has been really intractable," said Artandi. "The enzyme is extremely hard to study. But we've now found that telomerase is recruited to the telomeres through an interaction with a protein called TPP1 that coats the ends of chromosomes." What's more, the researchers have identified the exact region of TPP1 to which telomerase binds — a section called an OB-fold.

"When we mutated this site in TPP1," said Artandi, "we blocked the interaction between the two proteins and prevented telomerase from going to the telomeres. And when we interfered with this interaction in human cancer cells, the telomeres began to shorten." The researchers are now assessing whether the of the cancer cells, and their ability to divide unchecked, will also be affected by the treatment.

To confirm their finding, Artandi and his colleagues used cells from patients with pulmonary fibrosis — a debilitating scarring or thickening of lung tissue associated with telomerase mutations. The disease had been troubling to researchers and clinicians, however, because the patients' mutated telomerase seemed to be fully active when tested in the laboratory. Zhong and Artandi found that the disease-associated mutations occurred in the portion of telomerase that interacted with TPP1, and interfered with their binding. As a result the enzyme, although active, couldn't get to where it was needed.

"It was impossible to even begin to understand this mechanism before we knew how these two molecules interact," said Artandi. "But now that we're getting a handle on this, we can begin to think about developing inhibitors — maybe in the form of peptides or small molecules — that can mimic this disruption. This could be very valuable in cancer therapies."

Explore further: New target for cancer therapy identified

Related Stories

New target for cancer therapy identified

September 21, 2006

A new target for cancer therapy has been identified by Monash University scientists investigating the cell signalling pathways that turn on a gene involved in cancer development.

Scientists identify key component in cell replication

January 29, 2009

Last week, a presidential limousine shuttled Barack Obama to the most important job in his life. Scientists at the Stanford University School of Medicine have now identified a protein that does much the same for the telomerase ...

Study of stem cell diseases advanced by new technique

May 23, 2011

A rare genetic disease called dyskeratosis congenita, caused by the rapid shortening of telomeres (protective caps on the ends of chromosomes), can be mimicked through the study of undifferentiated induced pluripotent stem ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.