Researchers probe invisible vacancies in fuel cell materials

Aug 22, 2012

(Phys.org) -- Knowing the position of missing oxygen atoms could be the key to cheaper solid oxide fuel cells with longer lifetimes. New microscopy research from the Department of Energy's Oak Ridge National Laboratory is enabling scientists to map these vacancies at an atomic scale.

Although fuel cells hold promise as an efficient technology, they have yet to reach mainstream markets because of their high price tag and limited lifespans. Overcoming these barriers requires a fundamental understanding of fuel cells, which produce electricity through a chemical reaction between oxygen and a fuel. As conducting move through the fuel cell, they travel through vacancies where used to be. The distribution, arrangement and geometry of such oxygen vacancies in fuel cell materials are thought to affect the efficiency of the overall device.

"A big part of making a better fuel cell is to understand what the oxygen vacancies do inside the material: how fast they move, how they order, how they interact with interfaces and defects," said ORNL's Albina Borisevich. "The question is how to study them. It's one thing to see an atom of one type on the background of atoms of a different type. But in this case, you want to see if there are a few atoms missing. Seeing a void is much more difficult."

In research published in , ORNL scientists used scanning to determine the distribution of oxygen vacancies in a fuel cell below the level of a single unit cell. The team verified its findings with theoretical calculations and neutron experiments at the lab's .

"Even though the vacancy doesn't generate any signal in the electron micrograph, it's still a big disturbance in the structure," Borisevich said. "You can see that the lattice expands where vacancies are present. So we tracked the lattice expansion around vacancies and compared it with theoretical models, and we were able to develop a calibration for this type of material."

By providing a means to study vacancies at an atomic scale, the ORNL technique will help inform the development of improved fuel cell technologies in a systematic and deliberate fashion, in contrast to trial and error approaches.

Beyond its relevance to applications in fuel cells and information storage and logic devices, ORNL coauthor Sergei Kalinin explains that the team's research is also building a bridge between two scientific communities that traditionally have had little in common.

"From my perspective, it is physics marrying electrochemistry," Kalinin said. "The idea is that vacancies are important for energy, and vacancies are important for physics. The materials that physicists like to study are exactly the same as the materials used for fuel cells, and unless we understand how vacancies behave at interfaces, ferroic domain walls, and in thin films, we will not be able to fully appreciate the physics of these systems."

The team's research is also reinforced by a parallel study published in Physical Review Letters, with Borisevich and Kalinin as coauthors, that explains how to obtain parameters that describe vacancy-ordered systems from electron microscopy data.

Explore further: Global scientific team 'visualizes' a new crystallization process (w/ video)

Related Stories

Ceramic, heal thyself

Apr 17, 2008

A new computer simulation has revealed a self-healing behavior in a common ceramic that may lead to development of radiation-resistant materials for nuclear power plants and waste storage.

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 0

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

More vets turn to prosthetics to help legless pets

A 9-month-old boxer pup named Duncan barreled down a beach in Oregon, running full tilt on soft sand into YouTube history and showing more than 4 million viewers that he can revel in a good romp despite lacking ...