Researchers show new way of assembling particles into complex structures

Aug 03, 2012

(Phys.org) -- Many recent advances in microtechnology and nanotechnology depend on microscopic spherical particles self-assembling into large-scale aggregates to form a relatively limited range of crystalline structures.  Directed assembly is a new branch of this field, where scientists figure out how to make particles assemble to form a broad range of structures at given locations.

Current techniques for directed assembly typically use an applied field, such as an electric or magnetic field, to move particles and to assemble them into well-defined structures. Now, researchers at the University of Pennsylvania have identified a simple new method to direct particle assembly based only on surface tension and particle shape.

The research, led by Kathleen J. Stebe, professor in the Department of Chemical and Biomolecular Engineering and the school’s Deputy Dean for Research, was performed by a team of researchers in her laboratory, Marcello Cavallaro Jr., Lorenzo Botto, Eric P. Lewandowski and Marisa Wang. It was published in the Proceedings of the National Academy of Sciences.

Their results rely on the simple fact that a liquid surface will tend to minimize its surface area. 

“It’s the same reason that surface tension makes a drop of water want to be a sphere,” Stebe said. “But we can tune that phenomenon to do astonishing things.”

This video is not supported by your browser at this time.

Self-assembling spherical particles have been used to make new materials with unique optical and mechanical properties, but non-spherical, or anisotropic, particles may hold even greater promise. By having a definable directionality, the properties of the materials the particles make up can be altered based on their orientations.    

In the study, Stebe’s lab used cylindrical particles made out of a common polymer. When placed on the surface of a thin film of water, the cylinders produce a saddle-shaped deformation: the water’s surface dips at each end of a particle and rises up along their sides.

The Stebe lab had previously demonstrated that this saddle-shape can be used to orient two cylindrical particles end-to-end.  As the depressions at their ends come in contact, surface tension causes the area of the space between them to contract, bringing the ends together.

In the new study, instead of two particles interacting, particles interact with a stationary post. The post pokes through the water’s surface, causing the surface to curve upward around it. The interaction between a particle’s deformation and this curve is governed by the same phenomenon of shown in the earlier study; the particles move so as to make the surface area as small as possible. 

“This means that as soon as the particles hit the surface of the water, they change their alignment and start moving rapidly uphill toward the post,” Cavallaro said. “We were also able to predict the lines they would travel for three different post shapes.”  

By changing the cross-sectional shape of the posts, the researchers were able to show fine control over how the particles moved and oriented. A circular post attracted particles in straight lines, whereas an elliptical post drew particles to the elongated ends. A square post produced the most complex behavior, drawing particles strongly to the corners, leaving the sides open. 

The lab’s choice of particle shape and material was only to help the researchers observe the particles’ orientation and position; any non-spherical particle, on any liquid-liquid or liquid-vapor surface, would be governed by the same principles and produce the same type of deformation. This makes this research particularly powerful: it does not depend on the particle having a certain shape or being made from a certain material.

Surfaces studded with strategically placed and shaped posts could direct and orient particles into almost any configuration. And because the mechanism behind the particles’ movement is simply the surface curvature, their movement could be “programmed” by changing the arrangement of the posts or the shape of the interface. 

“I could go in with needle, for example, and dynamically pull the surface up at different locations, or over different times,” Stebe said. 

“Very often when we think about using micro- or , we’re not thinking about properties on that tiny scale: It’s going to be the organized structure made from micro- or nanoparticles that’s going to be useful, perhaps as a lens or a smart ,” she said. “This phenomenon could be used to make new structures by sending to certain locations. We could define paths and say ‘here’s a docking site: go there’ or ‘here’s a spot where we want nothing; don’t go there.’

“This is a clear demonstration of directed assembly. Like self-assembly, things come together from the bottom up, but here they come together exactly where we want them to.”

Explore further: Chemical vapor deposition used to grow atomic layer materials on top of each other

More information: Research abstract: www.pnas.org/content/108/52/20923.full

Related Stories

Curiosity, the stunt double

Feb 24, 2012

With a pair of bug-eyes swiveling on a stalk nearly 8 feet off the ground, the 6-wheeled, 1800-lb Mars rover Curiosity doesn’t look much like a human being.  Yet, right now, the mini-Cooper-sized ...

Nanoparticles seek and destroy groundwater toxins

Jun 04, 2012

(Phys.org) -- Iron nanoparticles encapsulated in a rust-preventing polymer coating could hold incredible potential for cleaning up groundwater contaminated with toxic chemicals, a leading water expert says.

Recommended for you

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Physicists create new nanoparticle for cancer therapy

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...