Never-before-seen plant metabolites discovered

Aug 24, 2012

(Medical Xpress)—Purdue University researchers have captured evolution in action through the discovery of a new set of metabolites synthesized by Arabidopsis plants, according to research findings published this week in the journal Science.

Clint Chapple, distinguished professor of biochemistry; former Purdue graduate student Jing-Ke Weng; current Purdue graduate student Yi Li; and Huaping Mo, associate director of the Purdue Interdepartmental NMR Facility, were studying how new evolve in plants when they discovered the , which they are calling arabidopyrones. Many different metabolites are used by plants for defense, pigmentation and to attract , while others are used by humans as pharmaceuticals and flavorings.

Arabidopyrones are found only in Arabidopsis, a common research plant, although it's unclear what the metabolites do.

"Understanding is critical to being able to understand how plants evolve and adapt to their environment, and, in an applied sense, having access to the genes involved in plant metabolism helps us manipulate those processes and harness them for our own use," Chapple said.

Arabidopsis diverged from its with related plants such as cabbage and about 40 million years ago. Since then, many Arabidopsis genes have been duplicated. When that happens, Chapple said, one copy of the gene typically continues to perform its previous function, while the other is free to mutate and acquire new properties and functions. One such duplication enabled Arabidopsis to begin making the new compounds Chapple and his group discovered.

"This is an example of how nature experiments with chemistry. If that new gene becomes useful to the plant because the new compounds help the plant survive in some way or reproduce more effectively, there is selection for the gene and it is maintained," Chapple said.

The way these compounds are made is reminiscent of how beets make their red . But these compounds are made from the amino acid tyrosine; whereas, arabidopyrones originate instead from phenylalanine, an amino acid plants use to make floral scent compounds, antioxidants and lignin. The newly evolved enzyme Chapple's group discovered reroutes some of the material flowing through these pathways and channels it toward other enzymes that complete the transformation to arabidopyrones.

"This is how plants acquire the ability to make new compounds," Chapple said.

Explore further: Single cells seen in unprecedented detail

Related Stories

Getting around gene loss

Oct 29, 2010

Genes ‘knocked out’ experimentally in metabolic networks of the model plant species, Arabidopsis thaliana (Fig. 1), are compensated for by duplicate genes or alternative synthetic pathways, accord ...

Plant enzymes reveal complex secrets

Mar 09, 2012

The enzymes needed for producing and chemically modifying functionally important plant molecules called anthocyanins have been identified by a research team led by Kazuki Saito of the RIKEN Plant Science Center, ...

Recommended for you

How an RNA gene silences a whole chromosome

21 hours ago

Researchers at Caltech have discovered how an abundant class of RNA genes, called long non-coding RNAs (lncRNAs, pronounced link RNAs) can regulate key genes. By studying an important lncRNA, called Xist, ...

Single cells seen in unprecedented detail

23 hours ago

Researchers have developed a large-scale sequencing technique called Genome and Transcriptome Sequencing (G&T-seq) that reveals, simultaneously, the unique genome sequence of a single cell and the activity ...

York's anti-malarial plant given Chinese approval

Apr 24, 2015

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

Apr 24, 2015

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.