Development of nanosheets film has potential for safe, effective gene transfection into cells

August 27, 2012

Japanese scientists from the NIMS International Center for Materials Nanoarchitectonics (MANA) have developed a nanostructured sheets film capable of introducing designated genes into animal cells. The scientists also demonstrated the safety and efficacy of the new nanosheet film as a substrate for reverse gene transfection.

The methods of introducing genes into cells can be performed in liquids (solution-based) or on the surface of a solid substrate (solid phase gene transfection). In the solid phase gene transfection, DNA is fixed on the solid surface and then cells adhere on the DNA-bearing surface. The objective of the present research is to explore new solid substrates for the reverse gene transfection. This solid-mediated transfection has attracted attention due to the higher delivery efficiency of DNA than transfection method. Different types of DNA are possible to arrange on a and introduce into cells. This technology is also effective in systematic analysis and profiling of the effects of genes.

Until now, an extracellular matrix called fibronectin, which is an animal-derived protein, or other similar substances, had been used as an accelerant in solid phase gene transfection. However, this approach had been considered problematic in situations, where the gene transferred cells are returned to the patient's body. Thus, the use of animal-derived substances has a serious concern from the viewpoint of safety, etc.

In the present research, the MANA researchers prepared a nanosheets film through a near-infinite number of nanoscale walls protruding from the surface. The film is composed of only inorganic silica without any animal sources. The MANA team found that genes can be introduced into cells with extremely when fixing DNA on the nanostructured silica film and contacting with cells. Since an animal-derived supplements is not necessary, this should be a safe and simple solid phase transfection system.

This research result is applicable to gene therapy and offers a revolutionary gene introduction method. It is expected to make a valued contribution to gene therapy for hereditary diseases such as diseases of inborn error of metabolism, hemophilia, etc., and for intractable diseases such as diabetes and the like.

Explore further: New lipid molecule holds promise for gene therapy

More information: pubs.rsc.org/en/Content/ArticleLanding/2012/CC/c2cc34289h

Related Stories

New lipid molecule holds promise for gene therapy

March 22, 2006

Scientists at the University of California, Santa Barbara have created a new molecule that holds promise in fighting disease via gene therapy. Inherited diseases, as well as many cancers and cardiovascular diseases, may eventually ...

What's next for gene therapy? Plastic

September 13, 2006

Gene therapy depends upon foreign DNA, even viruses, to deliver genes, therapeutic proteins, or medicine to cells within the body. Many scientists are looking for better chaperones across the cell membrane. Virginia Tech ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.