Multi-tasking supernova: Record-breaking stellar explosion helps understand far-off galaxy

Aug 30, 2012
Left: Portion of the Gemini spectrum of PS1-11bam from December 5 containing several interstellar absorption features of Fe II and Mg II at z = 1.566 (black). The error spectrum is shown in blue. For comparison we plot the GRB composite spectrum of Christensen et al. (2011). Right: A zoom-in on the relevant Fe II and Mg II lines demonstrates the similarity to GRB absorption spectra. Also shown is the [O II]3727 emission line at z = 1.567 from the January 1 Gemini spectrum.

(—Nature hath no fury like a dying star—and astronomers couldn't be happier...

An international research team, led by Edo Berger of Harvard University, made the most of a 's fury to probe a distant galaxy some 9.5 billion distant. The dying star, which lit the galactic scene, is the most distant of its kind ever studied. According to Berger, "It's like someone turned on a flashlight in a dark room and suddenly allowed us to see, for a short time, what this far-off galaxy looks like, what it is composed of."

The study, published recently in The , describes how the researchers used the 's light (called an ultra-luminous core-collapse supernova) as a probe to study the gas conditions in the space between the 's stars. Berger says the findings reveal that the distant galaxy's interstellar conditions appear "reassuringly normal" when compared to those seen in the galaxies of our local universe. "This shows the enormous potential of using the most luminous supernovae to study the ," he says. "Ultimately it will help us understand how galaxies like our came to be."

The discovery of the dying star in this distant galaxy was made using images from the Pan-STARRS1 survey telescope on Haleakala in Maui, Hawai'i. "These are the types of exciting and unexpected applications that appear when a new capability comes on line," said John Tonry, one of the study's co-authors and supernovae researcher at the University of Hawai'i at Manoa's Institute for Astronomy. Tonry adds, "Pan-STARRS is pioneering a new era in deep, wide-field, time-critical astronomy – and this is just the beginning." After the Pan-STARRS discovery, spectroscopic follow-up studies using the Multiple Mirror Telescope in Arizona and the 8-meter Gemini North telescope on Mauna Kea, Hawai'i provided the data used by the team to probe the gas of the distant galaxy's interstellar environment.

The spectra revealed the signatures of a distant ultra-luminous supernova, and equally important, the unique fingerprints of iron and magnesium within the that hosted the explosion. The galaxy itself contains a very young population of stars (~15 to 45 million years old) with a mass totaling some 2 billon Suns.

The ultra-luminous supernova explosion belongs to a relatively recently-identified and special breed of exploding stars. They are some 10-100 times more luminous than their ordinary less-energetic cousins and unusually blue in color. While the process leading to their demise is still being explored, evidence points to the central core-collapse of a star having as much as 100 times the mass of our Sun. The collapse triggers an enormous explosion that blasts prodigious amounts of heavier elements through the star's enormous outer layers before expanding into space.

Traditionally, astronomers have used two techniques to study distant galaxies: They would either; 1) look directly for chemical elements leaving bright imprints on the galaxy's spectrum of light; or 2) search indirectly for dark signatures in the spectrum of an even more distant quasar, which reveals chemical elements in an intervening system that have absorbed light along our line of sight.

Recently, astronomers have supplanted these methods with another: seeking dark absorption imprints in the afterglows of "gamma-ray bursts" (GRBs); these brief flashes are the brightest and most energetic explosions in the universe, but they fade away within hours. The method is also limited by the need for expensive Earth-orbiting satellites to first detect and pinpoint a burst's location with precision before astronomers can make ground-based studies.

"The beauty of studying distant galaxies using ultra-luminous supernovae as a tool is that it eliminates the need for satellites and offers more time for study," says Alicia Soderberg of Harvard University. "A typical ultra-luminous supernova can take several weeks to fade away."

The study by Berger and his team provides the first direct demonstration that ultra-luminous supernovae can serve as probes of distant galaxies. Their results suggest that with the future combination of large survey and spectroscopic telescopes ultra-luminous could be used to probe galaxies 90 percent of the way back to the Big Bang.

Gemini's mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

Explore further: Raven soars through first light and second run

More information:

Related Stories

A magnified supernova

Sep 27, 2011

Supernovae are among astronomers most important tools for exploring the history of the universe. Their frequency allows us to examine how active star formation was, how heavy elements have developed, and the ...

Pan-STARRS discovers two super supernovae

Jul 22, 2011

Supernovae are the brightest phenomenon in the current universe. As massive stars die as supernovae, they briefly outshine the rest of the stars in their galaxy and are visible, at least once the light gets ...

Intense Star Formation in the Early Universe

Apr 02, 2010

( -- Distant galaxies are not only far away in space. Because it takes time for their light to reach us, they are also very far away in time -- snapshots from the distant past.

Survey Reveals Building Block Process For Biggest Galaxies

Apr 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Galaxies in the young cosmos

May 21, 2012

( -- The universe was born about 13.7 billion years ago in the big bang. The Sun and its system of planets formed about five billion years ago. What happened, then, during that long, intervening stretch ...

Recommended for you

Raven soars through first light and second run

16 hours ago

Raven, a Multi-Object Adaptive Optics (MOAO) science demonstrator, successfully saw first light at the Subaru Telescope on the nights of May 13 and 14, 2014 and completed its second run during the nights ...

How can we find tiny particles in exoplanet atmospheres?

Aug 29, 2014

It may seem like magic, but astronomers have worked out a scheme that will allow them to detect and measure particles ten times smaller than the width of a human hair, even at many light-years distance.  ...

User comments : 0