Meddling with male malaria mosquito 'mating plug' to control an epidemic

Aug 20, 2012

Using information about the unique mating practices of the male malaria mosquito ― which, unlike any other insect, inserts a plug to seal its sperm inside the female ― scientists are zeroing in on a birth-control drug for Anopheles mosquitoes, deadly carriers of the disease that threatens 3 billion people, has infected more than 215 million and kills 655,000 annually.

They reported at the 244th National Meeting & Exposition of the American Chemical Society on development of an approach for screening substances that could prevent formation of the plug, thus preventing from reproducing and spreading malaria.

Richard H. G. Baxter, Ph.D., professor of chemistry at Yale University, who presented the report, described the search for a new birth-control strategy for mosquitoes. Anopheles gambiae mosquitoes mate in airborne swarms, but only females bite and feed on blood from people ― the bite that transmits the malaria parasite to humans. To ensure mating success, an Anopheles male produces a special "mating plug" to seal its sperm inside the female's mating chamber. The Yale researchers purified the specific enzyme, a transglutaminase, responsible for coagulating another protein called Plugin within the male's seminal fluid to form the plug. They went on to purify the Plugin protein and reconstitute the coagulation reaction in the lab, setting the stage to search for chemicals that inhibit this reaction.

The technology is based on a discovery about the plug in 2009 by Flaminia Catteruccia, Ph.D., then at Imperial College London. Catteruccia's research detailed the biochemical composition of the plug, identified the transglutaminase enzyme and showed that blocking the enzyme prevents females from storing sperm to fertilize their eggs. Catteruccia, now at the Harvard School of Public Health, is collaborating with Baxter and his team at Yale to translate that knowledge into technology to put a dent in the population of malaria mosquitoes.

"We have completed the necessary groundwork to start screening for chemicals that inhibit the enzyme," Baxter explained. "I think that there's a good chance that we will find a compound because there are many existing compounds that inhibit other transglutaminases. Ideally, it would be a substance that could be fed to males, sterilizing them so that they mate but no offspring result. It's a well-established biological insect-control technology called the sterile insect technique and has been used for decades."

The sterile insect technique was first used to control the screwworm fly in the southern United States and other areas. The screwworm fly was once responsible for hundreds of millions of dollars in losses to the cattle industry and consumers. The approach is used against tsetse flies in Africa that transmit sleeping sickness and can be effective against mosquitoes, which mate only once or twice in their lifetime. Male mosquitoes would be reared under controlled conditions, fed a transglutaminase inhibitor and released to mate with wild females, reducing the population without the use of insecticides.

The new approach may help to deploy the sterile insect technique against mosquitoes by overcoming previous logistical and environmental concerns. "By developing a chemical that is specific to the Anopheles mosquito and applied in a contained environment, we can minimize both cost and environmental impact," says Baxter. The technology is compatible with other methods such as genetic modification, pioneered by the British firm Oxitec.

The sterile insect technique is a different approach than traditional malaria control strategies, such as the indoor spraying of insecticides and the use of insecticide-treated bed nets. "Mosquitoes are adapting to the traditional control measures," warns Baxter. "They are becoming resistant to the commonly used insecticides such as DDT and pyrethroids, and they are avoiding bed nets by biting during the day and out-of-doors. The technique moves us away from trying to deliver chemicals to female mosquitoes by spreading them around people. Instead, we feed a chemical to the male, and he finds the females for us."

Explore further: Cell division speed influences gene architecture

add to favorites email to friend print save as pdf

Related Stories

Mosquitoes can't spot a spermless mate

Aug 08, 2011

A female mosquito cannot tell if the male that she has mated with is fertile or 'spermless' and unable to fertilise her eggs, according to a new study from scientists at Imperial College London.

Are sterile mosquitoes the answer to malaria elimination?

Nov 16, 2009

The Sterile Insect Technique (SIT), the release of sexually sterile male insects to wipe out a pest population, is one suggested solution to the problem of malaria in Africa. A new supplement, published in BioMed Central's ...

Scientists engineer mosquito immune system to fight malaria

Dec 22, 2011

Researchers at the Johns Hopkins Malaria Research Institute have demonstrated that the Anopheles mosquito's innate immune system could be genetically engineered to block the transmission of malaria-causing parasites to humans. ...

Recommended for you

Cell division speed influences gene architecture

11 hours ago

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

13 hours ago

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

14 hours ago

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

User comments : 0

More news stories

Citizen scientists match research tool when counting sharks

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...