Lunar Reconnaissance Orbiter spectrometer detects helium in Moon's atmosphere

Aug 15, 2012
The Lyman Alpha Mapping Project (LAMP) aboard LRO (shown here in a pre-flight photo) uses a novel method to peer into the perpetual darkness of the moon's so-called permanently shadowed regions. LAMP "sees" the lunar surface using the ultraviolet light from nearby space and stars, which bathes all bodies in space in a soft glow of ultraviolet light. (Credit: NASA Goddard/Debbie McCallum)

(Phys.org) -- Scientists using the Lyman Alpha Mapping Project (LAMP) aboard NASA's Lunar Reconnaissance Orbiter have made the first spectroscopic observations of the noble gas helium in the tenuous atmosphere surrounding the Moon. These remote-sensing observations complement in-situ measurements taken in 1972 by the Lunar Atmosphere Composition Experiment (LACE) deployed by Apollo 17.

Although LAMP was designed to map the lunar surface, the team expanded its science investigation to examine the far ultraviolet emissions visible in the tenuous atmosphere above the lunar surface, detecting helium over a campaign spanning more than 50 orbits. Because helium also resides in the interplanetary background, several techniques were applied to remove signal contributions from the background helium and determine the amount of helium native to the Moon. published a paper on this research in 2012.

"The question now becomes, does the helium originate from inside the Moon, for example, due to radioactive decay in rocks, or from an exterior source, such as the solar wind?" says Dr. Alan Stern, LAMP principal investigator and associate vice president of the Space Science and Engineering Division at Southwest Research Institute.

With support from LRO's suite of instruments, LAMP (shown here during installation) has previously determined that hydrogen, mercury and other volatile substances are present in the permanently shaded regions (PSRs) of the moon. It has also observed PSRs are darker at far-ultraviolet wavelengths and redder than nearby surfaces that receive sunlight. These darker regions indicate "fluffy" soils, while the reddening is consistent with the presence of water frost. (Credit: NASA)

In a related study led by Dr. Paul Feldman of Johns Hopkins University and published in Icarus, observations showed day-to-day variations in helium abundances, possibly varying with the solar wind, and also significantly decreasing when the Moon passed behind Earth out of sight from the solar wind.

"If we find the solar wind is responsible, that will teach us a lot about how the same process works in other airless bodies," says Stern.

If spacecraft observations show no such correlation, or other internal lunar processes could be producing helium that diffuses from the interior or that releases during lunar quakes.

The Lunar Atmosphere Composition Experiment (LACE) deployed by Apollo 17 in 1972 (shown here in a pre-flight photo) provided the first measurements of helium in the moon's atmosphere. Credit: NASA

"With LAMP's global views as it moves across the Moon in future observations, we'll be in a great position to better determine the dominant source of the helium," says Stern.

Another point for future research involves helium abundances. LACE measurements showed an increase in helium abundances as the night progressed. This could be explained by atmospheric cooling, which concentrates atoms at lower altitudes. LAMP will further build on those measurements by investigating how the abundances vary with latitude.

During its campaign, LACE also detected the noble gas argon on the lunar surface. Although significantly fainter to the spectrograph, LAMP also will seek argon and other gases during future observations.

Explore further: Cassini sees sunny seas on Titan

More information: The paper, "Lunar Atmospheric Helium Detections by the LAMP UV Spectrograph on the Lunar Reconnaissance Orbiter," by Stern, K.D. Retherford, C.C.C. Tsang, P.D. Feldman, W. Pryor and G.R. Gladstone, was published in Geophysical Research Letters, Vol. 39, doi:10.1029/2012GL051797 , 2012.

Related Stories

Solar storms could 'sandblast' the moon

Dec 06, 2011

(PhysOrg.com) -- Solar storms and associated Coronal Mass Ejections (CMEs) can significantly erode the lunar surface according to a new set of computer simulations by NASA scientists. In addition to removing ...

Recommended for you

Branson shocked as Virgin spaceship crash kills pilot

27 minutes ago

Virgin's pioneering tourist-carrying spacecraft crashed on a test flight in California on Friday, killing a pilot and scattering debris across the desert—and raising questions about the program's future. ...

China completes first mission to moon and back

12 hours ago

China completed its first return mission to the moon early Saturday with the successful re-entry and landing of an unmanned probe, state media reported, in the latest step forward for Beijing's ambitious ...

Tracking a gigantic sunspot across the Sun

12 hours ago

An active region on the sun – an area of intense and complex magnetic fields – rotated into view on Oct. 18, 2014. Labeled AR 12192, it soon grew into the largest such region in 24 years, and fired off ...

Spacecraft for tourists explodes on test flight (Update)

16 hours ago

A winged spaceship designed to take tourists on excursions beyond Earth's atmosphere exploded during a test flight Friday over the Mojave Desert, killing a pilot in the second fiery setback for commercial ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Sonhouse
not rated yet Aug 15, 2012
They didn't say whether they can tell the isotope. He3, from the sun.

He4, from rocks?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.