Leveraging bacteria in drinking water to benefit consumers

Aug 08, 2012
Leveraging bacteria in drinking water to benefit consumers

Contrary to popular belief, purified drinking water from home faucets contains millions to hundreds of millions of widely differing bacteria per gallon, and scientists have discovered a plausible way to manipulate those populations of mostly beneficial microbes to potentially benefit consumers. Their study appears in ACS' journal Environmental Science & Technology.

Lutgarde Raskin and colleagues Ameet Pinto and Chuanwu Xi explain that municipal water treatment plants typically try to minimize the growth of microbes in the huge filters that remove small particles and substances that can serve as nutrients for bacterial growth. These facilities also add chlorine or other disinfectants to kill bacteria and prevent them from thriving in water distribution pipes. Nevertheless, it's not possible to totally eliminate bacteria with current technology, making it important to determine how the filter and other water treatment steps impact the types and amounts of bacteria that remain. That's why the researchers set out to do this in a study at a treatment plant in Ann Arbor, Mich.

Their research provides suggestions on how to change which bacteria wind up in the drinking water. The scientists found that certain types of bacteria attach to the filters where they form biofilms from which small clumps can break off and make it into the drinking water supply. The water's pH was a strong factor in determining which bacteria made it into the . Measures as simple as varying the water pH or changing how the filters are cleaned, for example, could help water treatment plant workers shift the balance toward bacteria that are beneficial for humans by not allowing the harmful to compete.

Explore further: US delays decision on Keystone pipeline project

More information: “Bacterial Community Structure in the Drinking Water Microbiome Is Governed by Filtration Processes”, Environ. Sci. Technol., Article ASAP
DOI: 10.1021/es302042t

Abstract
The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water’s influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

add to favorites email to friend print save as pdf

Related Stories

Older filters, fresher water

Nov 26, 2007

Scientists in Australia have discovered that the older the water filter the better when it comes to reducing the off-putting earthy taste of some tap water. Writing in the Inderscience publication International Journal of ...

Real-world proof of hand washing's effectiveness

May 05, 2010

Scientists are reporting dramatic new real-world evidence supporting the idea that hand washing can prevent the spread of water-borne disease. It appears in a new study showing a connection between fecal bacteria ...

Recommended for you

US delays decision on Keystone pipeline project

22 hours ago

The United States announced Friday a fresh delay on a final decision regarding a controversial Canada to US oil pipeline, saying more time was needed to carry out a review.

New research on Earth's carbon budget

Apr 18, 2014

(Phys.org) —Results from a research project involving scientists from the Desert Research Institute have generated new findings surrounding some of the unknowns of changes in climate and the degree to which ...

User comments : 0

More news stories

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

China says massive area of its soil polluted

A huge area of China's soil covering more than twice the size of Spain is estimated to be polluted, the government said Thursday, announcing findings of a survey previously kept secret.

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...