Impulsive micromanagers help plants to adapt, survive

Aug 14, 2012
Jen Lau is an MSU biologist who studied how plants and microbes work together to help plants survive the effects of global changes. Credit: Photo courtesy of MSU

Soil microbes are impulsive. So much so that they help plants face the challenges of a rapidly changing climate.

Jen Lau and Jay Lennon, Michigan State University biologists studied how plants and microbes work together to help plants survive the effects of global changes, such as increased atmospheric CO2 concentrations, warmer temperatures and altered precipitation patterns. The results, appearing in the current issue of the , showed that microbes in the ground not only interact with plants, but they also prompt them to respond to environmental changes.

"We found that these changes in the plants happen primarily because of what global changes do to the belowground microbes rather than the plant itself," said Lau, who works at MSU's Kellogg Biological Station. "Drought stress affects microbes, and they, in turn, drive plants to flower earlier and help plants grow and reproduce when faced with drought."

The team conducted a multi-generational experiment that manipulated environmental factors above and below ground while paying close attention to the interaction between the plants and microbes in the soil. Close examination of this particle partnership revealed some interesting results.

Researchers already knew that reduced and altered their life cycle. The team was surprised, though, to observe that the plants were slow to evolve and, instead, microbes did most of the work of helping plants survive in new, drier environments. This happened because the microbes were quick to adapt to the changing environment.

This newfound aspect of their relationship gives plants an additional strategy for survival, Lau said.

"When faced with , plants may not be limited to traditional 'adapt or migrate' strategies," she said. "Instead, they may also benefit from a third approach – interacting with complementary species such as the diverse microbes found in the soil."

Explore further: Scientists find key to te first cell differentiation in mammals

Related Stories

How plants learned to respond to changing environments

Jul 12, 2007

A team of John Innes centre scientists lead by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their ...

Recommended for you

Research helps identify memory molecules

10 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

11 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

11 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0