Impulsive micromanagers help plants to adapt, survive

August 14, 2012
Jen Lau is an MSU biologist who studied how plants and microbes work together to help plants survive the effects of global changes. Credit: Photo courtesy of MSU

Soil microbes are impulsive. So much so that they help plants face the challenges of a rapidly changing climate.

Jen Lau and Jay Lennon, Michigan State University biologists studied how plants and microbes work together to help plants survive the effects of global changes, such as increased atmospheric CO2 concentrations, warmer temperatures and altered precipitation patterns. The results, appearing in the current issue of the , showed that microbes in the ground not only interact with plants, but they also prompt them to respond to environmental changes.

"We found that these changes in the plants happen primarily because of what global changes do to the belowground microbes rather than the plant itself," said Lau, who works at MSU's Kellogg Biological Station. "Drought stress affects microbes, and they, in turn, drive plants to flower earlier and help plants grow and reproduce when faced with drought."

The team conducted a multi-generational experiment that manipulated environmental factors above and below ground while paying close attention to the interaction between the plants and microbes in the soil. Close examination of this particle partnership revealed some interesting results.

Researchers already knew that reduced and altered their life cycle. The team was surprised, though, to observe that the plants were slow to evolve and, instead, microbes did most of the work of helping plants survive in new, drier environments. This happened because the microbes were quick to adapt to the changing environment.

This newfound aspect of their relationship gives plants an additional strategy for survival, Lau said.

"When faced with , plants may not be limited to traditional 'adapt or migrate' strategies," she said. "Instead, they may also benefit from a third approach – interacting with complementary species such as the diverse microbes found in the soil."

Explore further: Book looks at interrelationships among nitrogen, plants and the environment

Related Stories

How plants learned to respond to changing environments

July 12, 2007

A team of John Innes centre scientists lead by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their ...

Recommended for you

Study shows how giraffe assassin bugs outwit spider prey

October 26, 2016

(—A biologist at Macquarie University in Australia has discovered the secret behind the giraffe assassin's ability to catch and kill spiders in their webs. In his paper published on the open access site Royal Society ...

New analysis of big data sheds light on cell functions

October 26, 2016

Researchers have developed a new way of obtaining useful information from big data in biology to better understand—and predict—what goes on inside a cell. Using genome-scale models, researchers were able to integrate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.