New model gives hands-on help for learning the secrets of molecules

Aug 24, 2012
The models will enable researchers to quickly and collaboratively see, touch, and test ideas about molecular interactions and the behavior of proteins. Credit: Masaru Kawakami/ Review of Scientific Instruments

For biology researchers, the complex world of molecular proteins – where tens of thousands of atoms can comprise a single protein – may be getting clearer with the help of a new soft, transparent, and squishy silicone model they can hold in their hands. Its advantage over traditional computer and solid models is that it is mostly transparent and easy to manipulate, which will help researchers more intuitively understand protein structures, positions, and interactions.

The models will enable researchers to quickly and collaboratively see, touch, and test ideas about and the behavior of proteins. These insights are keys to innovation in drug design because they help generate discussion about what a particular molecular surface might be like and how a protein is shaped and structured. The models also allow researchers to simulate docking maneuvers involving molecules known as ligands and their partners, a chemical binding step that can turn a on or off.

This boost to molecular modeling comes from Masaru Kawakami, Ph.D., a biophysicist researcher at JAIST (Japan Advanced Institute of Science and Technology) in Ishikawa, Japan. It appears in the current issue of the American Institute of Physics (AIP) journal . "Because my new model is soft, users can deform the model and experience ligand binding or protein-protein association, which has never been possible with other physical molecule models", said Kawakami. "I believe my model would be an effective discussion tool for the classroom or laboratory to stimulate inspired learning."

Explore further: Unique sense of 'touch' gives a prolific bacterium its ability to infect anything

More information: Rev. Sci. Instrum. 83, 084303 (2012); doi: 10.1063/1.4739961

Related Stories

Using a light touch to measure protein bonds

Jun 30, 2008

MIT researchers have developed a novel technique to measure the strength of the bonds between two protein molecules important in cell machinery: Gently tugging them apart with light beams.

Chemical probes beat antibodies at own game

Apr 26, 2007

A new way of detecting biological structures could help in the fight against disease. The new method, developed by scientists at Oxford University, uses chemistry to assemble proteins into ‘protein probes’ ...

Recommended for you

Researchers unwind the mysteries of the cellular clock

5 hours ago

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

Signaling molecule crucial to stem cell reprogramming

5 hours ago

While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.