Georgia Tech advances potential commercial space flight system

Aug 15, 2012
Dr. Robert Braun, the David and Andrew Lewis Associate Professor in Space Technology in Georgia Tech's Guggenheim School of Aerospace Engineering.

(Phys.org) -- Last spring private industry successfully sent a spacecraft carrying cargo to the International Space Station. Now the race is on to see which company will be the first to make commercial human spaceflight a reality.

(SNC) is one of three companies that will receive hundreds of millions of dollars to further develop its commercial human spacecraft system, NASA announced earlier this month.

SNC has turned to Georgia Tech for expertise on how to ensure the smoothest possible re-entry for its spacecraft, the Dream Chaser, which is reminiscent of NASA’s shuttle.

Robert Braun, Georgia Tech professor of space technology, and his research team – Research Engineer Jenny Kelly and engineering graduate students Zach Putnam and Mike Grant – are working with SNC on the design of an advanced guidance algorithm that will make the most of the Dream Chaser’s superior aerodynamic performance during re-entry and landing.

Of the three companies selected by NASA to develop spaceships to taxi astronauts to and from the , Corporation is the only one with a winged vehicle. It is designed to launch vertically and land on a runway, similar to the Space Shuttle. Boeing and SpaceX are developing capsules that would land in a body of water.

Because the Dream Chaser is similar to the Space Shuttle, it could land using the same guidance algorithm the shuttle used. However, that algorithm, like the shuttle, is based on technology that is more than 40 years old; it does not take advantage of the onboard computing available for today’s space systems.

“The shuttle was built in the 1970s, and its designers didn’t have the onboard computing capabilities we have today,” Braun said. “The Dream Chaser can capitalize on an advanced entry guidance algorithm matched to its aerodynamic and onboard computing capability.”

Braun and his team took the Dream Chaser’s aerodynamic configuration, control surfaces and mass properties into account when developing the algorithm. To date, the algorithm runs a computer simulation that allows SNC engineers to tweak aspects of the spacecraft design based on scenarios such as variable atmospheric conditions to perfect the landing process.

The result is an algorithm that “allows the vehicle to fly how it was meant to fly,” Putnam said.

Georgia Tech engineers delivered an early prototype of the software to the SNC team this month for detailed evaluation and testing. 

Zachary Krevor, a Georgia Tech graduate who is SNC’s principal systems engineer with the flight dynamic and performance group, was eager to see the results.

“This is important for us because we feel the could have performance benefits for our vehicle and make it robust to atmospheric disturbances while ensuring we have a ‘low g’ re-entry,” he said. “Capsules do not have the ‘low g’ re-entry that is so important for both astronauts and sensitive science payloads.”

For the students, the project provides real-world experience in the nascent commercial space industry.

 “To be able to participate in the new era of commercial flight is very exciting,” Grant said. “It has been a great learning experience to see how commercial space companies work and a real thrill to contribute in a meaningful way to the potential flight of this new space flight system.”

Sierra Nevada Corporation’s Dream Chaser received an award of $212.5 million from ’s Commercial Crew Integrated Capability Program on August 3 that will allow the company to complete development of the system and transport crews to space as early as 2016. An approach and landing test for the is scheduled for later this year.

Explore further: NKorea launch pad expansion 'nearing completion'

add to favorites email to friend print save as pdf

Related Stories

NASA completes Dream Chaser flight test milestone

Jun 01, 2012

(Phys.org) -- Sierra Nevada Corporation (SNC) Space Systems successfully completed a "captive carry test" of its full-scale Dream Chaser orbital crew vehicle Tuesday, marking a new milestone in the company's ...

Testing for Dream Chaser Space System completed

May 15, 2012

NASA's Marshall Space Flight Center in Huntsville, Ala., successfully completed wind tunnel testing for Sierra Nevada Corp. (SNC) Space Systems of Louisville, Colo. The test will provide aerodynamic data that will aid in ...

Image: Dream Chaser buffet wind tunnel model

May 08, 2012

(Phys.org) -- The Dream Chaser model with its Atlas V launch vehicle is undergoing final preparations at the Aerospace Composite Model Development Section's workshop for buffet tests at the Transonic Dynamics ...

Recommended for you

Voyager map details Neptune's strange moon Triton

1 hour ago

(Phys.org) —NASA's Voyager 2 spacecraft gave humanity its first close-up look at Neptune and its moon Triton in the summer of 1989. Like an old film, Voyager's historic footage of Triton has been "restored" ...

How the sun caused an aurora this week

2 hours ago

On the evening of Aug. 20, 2014, the International Space Station was flying past North America when it flew over the dazzling, green blue lights of an aurora. On board, astronaut Reid Wiseman captured this ...

NKorea launch pad expansion 'nearing completion'

13 hours ago

A U.S. research institute says construction to upgrade North Korea's main rocket launch pad should be completed by fall, allowing Pyongyang (pyuhng-yahng) to conduct a launch by year's end if it decides to do so.

Mars, Saturn and the claws of Scorpius

19 hours ago

Look up at the night sky this week and you'll find Mars and Saturn together in the west. Mars stands out with its reddish colouring and you might just be able to detect a faint yellow tinge to Saturn. ...

User comments : 0