New flexible electronics technology may lead to new medical uses

August 30, 2012

A Wayne State University researcher has developed technology that opens new possibilities for health care and medical applications of electronic devices.

Yong Xu, associate professor of electrical and computer engineering in the College of Engineering, has developed a simple technology compatible with silicon-on-insulator (SOI) (CMOS) processes for making flexible electronics. "A Silicon-On-Insulator Complementary-Metal-Oxide-Semiconductor Compatible Flexible Electronics Technology," published recently in Applied Physics Letters, describes the project, which was part of a National Science Foundation effort.

Flexible electronics have attracted a lot of attention for their enormous potential in many important applications, such as wearable health monitoring devices and . While a number of approaches to making flexible sensors or electronics have been developed over the last two decades, Xu said those technologies cannot take full advantage of mainstream CMOS processes.

Xu's technology has an advantage over existing methods, such as direct fabrication on flexible substrate and transfer printing, in that it is SOI-CMOS compatible. It fabricates high-performance and high-density CMOS circuits onto SOI wafers, and then uses two layers of Parylene C (a polymer), one of which is perforated, to bond them to .

The lamination of the electronics between those parylene layers offers the additional benefit of protection from environmental moisture. Xu said Parylene C, which creates a flexible skin, already has been used in other and is well tolerated by .

His process allows more high-performance electronic devices to be attached to the flexible surface by eliminating the transfer printing step, in which electronics are removed from a harder surface and integrated into a softer one. Additionally, the process allows various sensors and to be integrated into the flexible substrate.

Xu said his technology could result in retinal prostheses that cause less tissue irritation and therefore work better and longer, as well as more comfortable wearable health monitoring devices. Other possible applications include balloon catheters and stents.

"The ultimate goal is to develop flexible and stretchable systems integrated with electronics, sensors, microfluidics, and power sources, which will have a profound impact on personalized medicine, telemedicine and health care delivery," Xu said.

Explore further: UI licenses flex electronics technology

Related Stories

UI licenses flex electronics technology

December 19, 2006

The University of Illinois-Champaign has signed a licensing agreement regarding the development of flexible, stretchable and printable electronic circuitry.

Recommended for you

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.