First field study finds soot particles absorb significantly less sunlight than predicted by models

Aug 30, 2012

Viewed as a potential target in the global effort to reduce climate change, atmospheric black carbon particles absorb significantly less sunlight than scientists predicted, raising new questions about the impact of black carbon on atmospheric warming, an international team of researchers, including climate chemists from Boston College, report today in the latest edition of the journal Science.

Mathematical models and used to study airborne led to projections that the absorption-boosting chemicals that coat black carbon could yield an increase in absorption by as much as a factor of two. But field studies in smoggy California cities found black enhancements of just 6 percent, suggesting that may be overestimating warming by black carbon, the researchers report.

The surprising results highlight the early challenges in a nascent sector of and could have implications for regulatory efforts to reduce the production of black carbon, or soot, by curbing the burning of fossil fuels. Still, scientists agree that black carbon in the atmosphere has a significant effect on global and , with earlier studies ranking the warming effects of black second only to .

"The team's in California showed the enhancement of absorption was very small – approximately six percent instead of by a factor of two," said Boston College Professor of Chemistry Paul Davidovits, an authority on , known as aerosols. "In one respect, it shows that nature is much more complicated than our initial laboratory experiments and modeling indicated. Now we will try to unravel and understand that complexity."

The historic role of black carbon soot in has been well documented by scientists, most notably in the study of ice samples taken from deep within glaciers. For the past several years, Davidovits has collaborated with Aerodyne Research Inc., and colleagues from universities and government labs in the U.S., Canada and Finland. Their research has focused on the chemical and optical properties of sub-micron airborne particles of black carbon produced by commercial and industrial activity.

Unlike carbon dioxide and other greenhouse gasses, which can survive in the atmosphere for decades and centuries, black carbon has a relatively short life span of approximately one to two weeks. Black carbon is part of a group of pollution sources known as Short-Lived Climate Forcers (SLCFs), including methane gas and ozone, which are produced on earth.

During their lifetime, black carbon particles are coated with airborne chemicals, which sophisticated laboratory tests have shown can act like lenses capable of increasing the ability of the particles to absorb sunlight and heat the atmosphere. That has raised a critical question as to whether targeting black carbon emissions in an effort to reduce climate change could yield relatively quick results on a regional or global level.

Led by principal investigators Christopher D. Cappa, a professor of engineering at the University of California, Davis, and Timothy B. Onasch, principal scientist at Aerodyne and an associate research professor of chemistry at Boston College, the team analyzed air samples near the California cities of Los Angeles, San Francisco and Sacramento.

Researchers tested air samples using a combination of real-time techniques, including aerosol mass spectrometry and photoacoustic spectroscopy. These techniques are capable of making measurements to determine the chemical, physical and optical properties of the black carbon particles, said Onasch, whose Billerica, MA-based company has developed the aerosol mass spectrometer instruments.

Onasch said the recent findings set the stage for further studies around the world under different atmospheric conditions in order to better understand how chemical coatings from a range of emission sources affect the absorptive properties of black carbon.

"When you put a soot particle into the atmosphere, we known it contains an elemental carbon component and we know what it's absorption will be based on mass and size," said Onasch. "But black carbon particles in the air are constantly changing. They collect inorganic and organic materials, they grow, change shapes, and change composition. These changes affect the absorption or warming capability of the . So the question remains: to what extent exactly?"

The recent findings only add to the challenge of understanding complex chemical activity in the atmosphere, said Davidovits, whose research is supported by the National Science Foundation's Atmospheric Chemistry division and the U.S. Department of Energy's Atmospheric System Research program.

"These findings do require us to reduce our projections about the amount of heating soot produces, at least under some experimental conditions. But the findings don't point to soot as being a harmless climate forcer," said Davidovits. "Soot remains an important climate heating agent, as well as a health problem that has been well documented."

Explore further: Clean air: Fewer sources for self-cleaning

More information: "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon," by C.D. Cappa, Science, 2012.

Related Stories

Climate change from black carbon depends on altitude

Apr 14, 2011

Scientists have known for decades that black carbon aerosols add to global warming. These airborne particles made of sooty carbon are believed to be among the largest man-made contributors to global warming because they absorb ...

Recommended for you

Clean air: Fewer sources for self-cleaning

1 hour ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

1 hour ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

8 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

8 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...