Making efficient color filter for display applications

August 29, 2012
Schematic of the tunable color filter. The combination of a gold film with ring-shaped holes and the use of liquid crystals (red and green) enables pixels of a defined color that can be turned on and off. © 2012 Y. J. Liu

Flat panel displays, mobile phones and many digital devices require thin, efficient and low-cost light-emitters for applications. The pixels that make up the different colors on the display are typically wired to complex electronic circuits that control their operation.

Jing Hua Teng at the A*STAR Institute of Materials Research and Engineering and co-workers have now developed a that requires a much simpler architecture for operation. They demonstrated that combining a thin perforated gold film with a layer is all that it takes to make an efficient .

"Our color filters are a lot thinner and more compact than conventional thin-film-based color filters," says Teng. "The colors of these filters can be tuned with ease so they are very versatile in applications."

The color selection of the devices comes from the patterned gold film. The collective motions of the electrons on the film surface—the so-called surface plasmons—absorb light at wavelengths that depend on the details of these patterns. In the present case, the patterns are narrow, nanometer-sized rings cut out of the films (see image). As the diameter of the rings changes, so does the color of the . Pixels of a different color can be realized simply by patterning rings of different sizes across the same gold film.

To realize a full display, however, each of these pixels needs to be turned on and off individually. This is where liquid crystals come in.

Liquid crystals are molecules that can be switched between two different states by , such as ultraviolet light. In their normal state the crystals let visible light pass through so that the pixel is turned on. But when ultraviolet is also present, the structure of the will change so that it absorbs visible light (i.e. the pixel is turned off). This process can be repeated over many cycles without degrading the device itself.

Although the device works in principle, it remains a concept on the drawing board for now. This is because there are still many issues that need to be overcome, for example, the optimization of the switching speed and the contrast between 'on' and 'off' states. In future work, the researchers will need to extend their ideas so that their device can serve a larger area and produce the fundamental colors red, green and blue.

Teng and his team are quite optimistic that they will achieve this soon.

Explore further: Samsung Develops World's Largest (32'') LCD Panel Without a Color Filter

More information: Liu, Y. J., Si, G. Y., Leong, E. S. P., Xiang, N., Danner, A. J. & Teng, J. H. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Advanced Materials 24, OP131–OP135 (2012).

Related Stories

Epson's new 4K panel for 3LCD projectors

November 10, 2009

( -- Seiko Epson Corporation has announced the world's first 4K panel for 3LCD (liquid crystal display) projectors. The panel will enable the projectors to produce a bright image of 4096 x 2160 pixels resolution ...

Smallest U-M logo demonstrates advanced display technology

August 24, 2010

In a step toward more efficient, smaller and higher-definition display screens, a University of Michigan professor has developed a new type of color filter made of nano-thin sheets of metal with precisely spaced gratings.

Fujitsu shows off next-gen color LCD eReader

July 11, 2011

( -- Currently the screens of e-readers come in two colors, black and white. While the Nook does have a color version out but that screen is an LCD and not an e-ink. While for a while that did create a debate ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.