Looking for dark matter a mile underground

Aug 15, 2012 by Joseph Piergrossi
Looking for dark matter a mile underground
Physicist Andrew Sonnenschein inspects the COUPP bubble chamber.

For the past two years, a small bubble chamber has been on the lookout for dark-matter particles a mile underground at SNOLAB in Sudbury, Ontario. Now that experiment is about to get company – its big brother is moving in. The new particle detector, developed at the Department of Energy’s Fermi National Accelerator Laboratory, will be much more sensitive to dark-matter particles than its predecessor.

The two bubble chambers, with volumes of 2 and 30 liters respectively, are part of an experiment known as the Chicago Observatory for Underground Particle Physics. Initiated by physicist Juan Collar at the University of Chicago, COUPP initially took data in a hall 350 feet underground at Fermilab to look for . When scientists improved the sensitivity of their particle detectors, stemming from cosmic-ray showers created too much noise and the COUPP collaboration decided to move to the deeper SNOLAB location, which provides more shielding against cosmic rays.

Moving the 30-liter COUPP detector into SNOLAB’s clean rooms will require some unusual work. To enter the laboratory, scientists take a mile-long elevator ride underground, walk a mile through an old mining tunnel, take a shower to remove any uranium or thorium dust stemming from the surrounding rock and dress in gowns and hairnets. Like the scientists, all pieces of the detector will need scrubbing and cleaning, too. Only then can they enter the clean rooms that make up SNOLAB.

When operational, the new bubble chamber will contain superheated fluid. Most will pass through the chamber without leaving a trace. But when a massive particle hits an atomic nucleus in the fluid, the energy released in the collision will bring a tiny region of the fluid to a boil, which leads to the formation of a bubble. Cameras will record all bubbles that develop. The challenge is to distinguish between bubbles caused by dark-matter particles and those caused by other known particles, such as neutrons. The COUPP scientists have developed various methods to separate those events, including listening to the sound created when a bubble forms.

The COUPP collaboration expects the new detector to be running by the end of the year and data collection to begin next year.

Explore further: New insights found in black hole collisions

More information: www.snolab.ca/

add to favorites email to friend print save as pdf

Related Stories

Exploring the secrets of dark matter

Feb 18, 2010

Even the biggest Star Trek fan would probably have trouble understanding the technical details of the research done by Queen's University Particle Astrophysics Professor Wolfgang Rau of Kingston, Canada.

New Limits on the Origin of Dark Matter

Jan 27, 2009

(PhysOrg.com) -- Determining the identity of dark matter, the mysterious stuff thought to make up the vast majority of matter in the universe, is one of the most fundamental challenges facing modern physics. Through theory ...

CRESST team finds new 'evidence' of dark matter

Sep 08, 2011

(PhysOrg.com) -- In the never ending search for proof that dark matter really exists, new findings have emerged from a team working under a big mountain in Italy. The group, from the Max Planck Institute in ...

Recommended for you

New insights found in black hole collisions

20 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

20 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

23 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (1) Aug 16, 2012
When operational, the new bubble chamber will contain superheated fluid. Most dark-matter particles will pass through the chamber without leaving a trace.

Talking about dark matter particles, what is it? Maybe we could get some idea from which Higgs boson arisen from Higgs field concept, i.e. it is possible that dark matter particles could be arisen from dark matter energy (dark energy). This understandable unconventional idea could be found in paper below.
http://www.vacuum...mid=9=en

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.