Next generation 3-D theater: Optical science makes glasses a thing of the past

Aug 20, 2012
Actual experimental results demonstrate the promise of a glasses-free 3-D theater experience. Two cars, one red and one blue, are projected onto a screen through a parallax barrier. As the light shines back through the polarizer, two offset images are created, which creates the visual cues that the brain interprets as depth. Credit: Optics Express

Even with current digital technology, the latest Hollywood blockbusters still rely on clunky glasses to achieve a convincing 3-D effect. New optics research by a team of South Korean investigators offers the prospect of glasses-free, 3-D display technology for commercial theaters. Their new technique, described in a paper published today in the Optical Society's open-access journal Optics Express, uses space more efficiently and is cheaper than current 3-D projection technology.

From the early days of cinema, film producers have used various techniques to create the illusion of depth – with mixed results. But even with , the latest Hollywood blockbusters still rely on clunky glasses to achieve a convincing 3-D effect.

New optics research by a team of South Korean investigators offers the prospect of glasses-free, 3-D for commercial theaters. Their new technique, described in a paper published today in the Optical Society's (OSA) open-access journal , can bring this added dimension while using space more efficiently and at a lower cost than current 3-D .

"There has been much progress in the last 10 years in improving the viewers' experience with 3-D," notes the team's lead researcher Byoungho Lee, professor at the School of Electrical Engineering, Seoul National University in South Korea. "We want to take it to the next step with a method that, if validated by further research, might constitute a simple, compact, and cost-effective approach to producing widely available 3-D cinema, while also eliminating the need for wearing polarizing glasses."

Polarization is one of the fundamental properties of light; it describes how light waves vibrate in a particular direction—up and down, side-to-side, or anywhere in between. Sunlight, for example, vibrates in many directions. To create modern 3-D effects, movie theaters use linearly or circularly polarized light. In this technique, two projectors display two similar images, which are slightly offset, simultaneously on a single screen. Each projector allows only one state of polarized light to pass through its lens. By donning the familiar polarized glasses, each eye perceives only one of the offset images, creating the depth cues that the brain interprets as three dimensions.

The experimental setup of a proposed glasses-free 3-D theater experience is shown, with the projector in the familiar front position, creating 3-D images. Credit: Optics Express

The two-projector method, however, is cumbersome, so optical engineers have developed various single projector methods to achieve similar effects. The parallax barrier method, for example, succeeds in creating the of 3-D, but it is cumbersome as well, as it requires a combination of rear projection video and physical barriers or optics between the screen and the viewer. Think of these obstructions as the slats in a venetian blind, which create a 3-D effect by limiting the image each eye sees. The South Korean team has developed a new way to achieve the same glasses-free experience while using a single front projector against a screen.

In their system, the Venetian blinds' "slat" effect is achieved by using polarizers, which stop the passage of light after it reflects off the screen. To block the necessary portion of light, the researchers added a specialized coating to the screen known as a quarter-wave retarding film. This film changes the polarization state of light so it can no longer pass through the polarizers.

As the light passes back either through or between the polarizing slates, the offset effect is created, producing the depth cues that give a convincing 3-D effect to the viewer, without the need for glasses.

The team's experimental results reported today show the method can be used successfully in two types of 3-D displays. The first is the parallax barrier method, described above, which uses a device placed in front of a screen enabling each eye to see slightly different, offset images. The other projection method is integral imaging, which uses a two-dimensional array of many small lenses or holes to create 3-D effects.

"Our results confirm the feasibility of this approach, and we believe that this proposed method may be useful for developing the next generation of a glasses-free projection-type 3-D display for commercial theaters," notes Lee.

As a next step in their research, the team hopes to refine the method, and apply it to developing other single-projector, frontal methods of 3-D display, using technologies such as passive polarization-activated lens arrays and the lenticular lens approach.

While their experimental results are promising, it may be several years until this technology can be effectively deployed in your local movie theater for you to enjoy without polarizing glasses.

Explore further: Precision gas sensor could fit on a chip

More information: "A frontal projection-type three-dimensional display," Optics Express, Vol. 20, Issue 18, pp. 20130-20138 (2012). www.opticsinfobase.org/oe/abst… m?uri=oe-20-18-20130

Related Stories

3D TV -- Without the Glasses (w/ Video)

Oct 29, 2009

(PhysOrg.com) -- Even with "active shutter" 3D technology for television sets, the wearing of special glasses is still required in order to get the proper experience. They aren't those red and blue or red and ...

Sony patent seeks to correct autostereoscopic blur

May 13, 2012

(Phys.org) -- Sony has filed a patent with the U.S. Patent & Trademark Office for a glasses-free 3-D display that will adjust the picture so that the user gets an optimal view no matter how far or close to the screen. In its application, “Stereoscopic Image Proces ...

Toshiba supersized, glasses-free, 3-D TV steals IFA show

Sep 04, 2011

(PhysOrg.com) -- Toshiba earlier this week showed off its new no-glasses 55-inch 3-D TV. The company says it is the world’s first large screen 3-D TV that does not require any glasses. According to Toshiba, ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

AWaB
not rated yet Aug 23, 2012
Awesome! I have a 3D TV and love it. I deal w/ the glasses b/c the results are quite worth the unfortunate glasses. I can't wait to be able to watch 3D as a normal viewing method w/out glasses!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.