New climate history adds to understanding of recent Antarctic Peninsula warming

Aug 22, 2012

Results published this week by a team of polar scientists from Britain, Australia and France adds a new dimension to our understanding of Antarctic Peninsula climate change and the likely causes of the break-up of its ice shelves.

The first comprehensive of a 15,000 year from an ice core collected from James Ross Island in the region is reported this week in the journal Nature. The scientists reveal that the rapid of this region over the last 100 -years has been unprecedented and came on top of a slower natural that began around 600 years ago. These centuries of continual warming meant that by the time the unusual recent warming began, the Antarctic Peninsula ice shelves were already poised for the dramatic break-ups observed from the 1990's onwards.

The Antarctic Peninsula is one of the fastest warming places on – average temperatures from meteorological stations near James Ross Island have risen by nearly 2°C in the past 50 years.

Lead author Dr Robert Mulvaney OBE, from British Antarctic Survey (BAS) says, "This is a really interesting result. One of the key questions that scientists are attempting to answer is how much of the Earth's recently observed warming is due to natural variation and how much can be attributed to human activity since the industrial revolution. The only way we can do this is by looking back through time when the Earth experienced ice ages and warm periods, and ice cores are a very good method for doing this."

Dr Mulvaney continues, "We know that something unusual is happening in the Antarctic Peninsula. To find out more we mounted a scientific expedition to collect an ice core from James Ross Island – on the northernmost tip of the Peninsula. Within the 364m long core are layers of snow that fell every year for the last 50,000 years. Sophisticated chemical analysis – at BAS and the NERC Isotope Geosciences Laboratory (part of British Geological Survey) – was used to re-create a temperature record over this period.

"For this study we looked in detail at the last 15,000 years – from the time when the Earth emerged from the last ice age and entered into the current warm period. What we see in the ice core temperature record is that the Antarctic Peninsula warmed by about 6°C as it emerged from the last ice age. By 11,000 years ago the temperature had risen to about 1.3°C warmer than today's average and other research indicates that the Antarctic Peninsula ice sheet was shrinking at this time and some of the surrounding ice shelves retreated. The local climate then cooled in two stages, reaching a minimum about 600 years ago. The ice shelves on the northern Antarctic Peninsula expanded during this cooling. Approximately 600 years ago the local temperature started to warm again, followed by a more rapid warming in the last 50-100 years that coincides with present-day disintegration of ice shelves and glacier retreat."

Co-Author Dr Nerilie Abram formerly from British Antarctic Survey and now with the Research School of Earth Sciences, at The Australian National University says, "The centuries of ongoing warming have meant that marginal ice shelves on the northern Peninsula were poised for the succession of collapses that we have witnessed over the last two decades. And if this rapid warming that we are now seeing continues, we can expect that ice shelves further south along the Peninsula that have been stable for thousands of years will also become vulnerable."

Olivier Alemany, from the French Laboratoire de Glaciologie et Géophysique de l'Environnement was part of the expedition. He says, "The international polar science community has collected and analysed ice cores from Antarctica and Greenland as part of an effort to reconstruct the Earth's past climate and atmosphere. Our team wanted to understand how the recent warming and the loss of compared to the longer term climate trends in the region."

This research makes a significant contribution to the understanding of the role that Antarctica's ice sheets play in influencing future climate and sea-level rise. It was funded by NERC (Natural Environment Research Council).

Explore further: Sculpting tropical peaks

More information: DOI: 10.1038/nature11391

add to favorites email to friend print save as pdf

Related Stories

Ice shelves disappearing on Antarctic Peninsula

Feb 22, 2010

Ice shelves are retreating in the southern section of the Antarctic Peninsula due to climate change. This could result in glacier retreat and sea-level rise if warming continues, threatening coastal communities ...

Antarctic ice shelf 'hangs by a thread'

Mar 25, 2008

British Antarctic Survey has captured dramatic satellite and video images of an Antarctic ice shelf that looks set to be the latest to break out from the Antarctic Peninsula. A large part of the Wilkins Ice Shelf on the Antarctic ...

Recommended for you

Sculpting tropical peaks

43 minutes ago

Tropical mountain ranges erode quickly, as heavy year-round rains feed raging rivers and trigger huge, fast-moving landslides. Rapid erosion produces rugged terrain, with steep rivers running through deep ...

Volcano expert comments on Japan eruption

1 hour ago

Loÿc Vanderkluysen, PhD, who recently joined Drexel as an assistant professor in Department of Biodiversity, Earth and Environmental Science in the College of Arts and Sciences, returned Friday from fieldwork ...

NASA's HS3 looks Hurricane Edouard in the eye

14 hours ago

NASA and NOAA scientists participating in NASA's Hurricane and Severe Storms Sentinel (HS3) mission used their expert skills, combined with a bit of serendipity on Sept. 17, 2014, to guide the remotely piloted ...

Tropical Storm Rachel dwarfed by developing system 90E

19 hours ago

Tropical Storm Rachel is spinning down west of Mexico's Baja California, and another tropical low pressure area developing off the coast of southwestern Mexico dwarfs the tropical storm. NOAA's GOES-West ...

User comments : 0