A chemistry tale of two carbons: Field study of urban, natural emissions interacting to affect climate change

Aug 27, 2012
A chemistry tale of two carbons
The CARES field campaign was centered on Sacramento, California. The yellow dots indicate the locations of the two ground supersites: one in the Sacramento urban area (T0) and the other in the rural foothills area (T1) rich in natural hydrocarbon emissions. The DOE G-1 and NASA B200 King Air aircraft were integral to the CARES campaign for collecting data aloft over a larger domain. The arrows indicate the typical daytime wind flow pattern in the region during summer. 

(Phys.org)—City carbons and country carbons regularly mix in the atmosphere, but how do they get along? That is essentially the question being tackled by a team of scientists led by researchers at Pacific Northwest National Laboratory. In the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) research campaign they amassed a rich data set that will shed light on key science questions: how do these carbons meet, mix, travel, grow old, and affect the Earth's climate? The scientific overview of the field research was published in Atmospheric Chemistry and Physics in August 2012.

Carbon-containing, or "carbonaceous," aerosols are microscopic, solid or liquid particles dispersed in the atmosphere, and they can originate from both natural and human-caused sources. They affect the Earth's climate by influencing how clouds form and by absorbing or reflecting the sun's energy. The phrase "carbonaceous aerosol " invites a mental picture of black exhaust spewing from a diesel truck or industrial smoke stack. These sources of soot, a.k.a. black carbon, are easily pictured. But other types of originate from natural, or biogenic, sources as part of natural processes. As vegetation and forests grow, decay, and in some cases burn, many different gases and are released into the atmosphere.

Understanding what happens when the carbon-containing emissions from human activities, such as transportation and industry, mix and chemically interact with those from natural sources will help provide a better representation of their radiative energy effects in climate models. The carbon bits in this study have a tale to tell. Understanding their story is important because escalating emissions of carbon-containing aerosols around the world from increasing fossil fuel burning, biomass burning, and wildfires have far-reaching impacts on Earth's climate.

A chemistry tale of two carbons
The CARES field campaign was designed to increase scientific knowledge about the evolution of black carbon, primary organic aerosols (POA), and secondary organic aerosols (SOA) from both human-caused and natural (biogenic) sources. Black carbon and primary organic aerosols are emitted directly into the atmosphere through vehicle exhaust, meat cooking, and biomass burning. Secondary organic aerosols are formed through complex physical and chemical interactions between pre-existing aerosols in the atmosphere and trace organic gases emitted from both human-caused and natural sources. Illustration adapted from the ARM Climate Research Facility. 

In June 2010, a team of scientists led by researchers at PNNL conducted an intensive aircraft and ground-based field study in and around Sacramento, California, where they measured carbonaceous aerosols and their precursors from both natural and human-caused sources. This sampling location was selected for its unique summertime meteorology. During this time, urban emissions from the San Francisco Bay Area sweep into the Central Valley with onshore winds and pick up additional emissions from Sacramento. The plume of urban emissions then flows into the Sierra Nevada Mountains where it mixes and interacts with natural aerosols and their precursors emitted from forests.

Laying the groundwork for future analyses, the scientists identified three observation periods when the aerosols in the sampling area were impacted by natural emissions only, urban emissions only, and when both types of emissions mixed together. The measurements were focused on primary aerosols such as that are directly emitted into the atmosphere as well as aerosols that are formed in the atmosphere called secondary organic aerosols and their climate-related properties.

In the first of many studies to follow, this research paper presents the scientific overview of the CARES field campaign and provides a roadmap of future data analyses and modeling studies of the complex interactions between the urban and natural carbonaceous aerosols. Data from the campaign have been uploaded to the U.S. DOE's Atmospheric Radiation Measurement (ARM) Climate Research Facility's data archive for future studies by the science community.

The research team has laid out a roadmap for data analysis that will help improve and evaluate various aerosol processes and properties modules, which feed into regional and global .

Explore further: Study shows air temperature influenced African glacial movements

More information: Zaveri RA, et al. 2012. "Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)." Atmospheric Chemistry and Physics 12, 7647-7687. DOI:10.5194/acp-12-7647-2012.

add to favorites email to friend print save as pdf

Related Stories

A finger to the wind

Mar 06, 2012

Like testing the wind direction before taking flight, researchers led by scientists at Pacific Northwest National Laboratory assessed the meteorological conditions during a large observational study of carbon-containing ...

Atmospheric scientists start monthlong air sampling campaign

Jun 02, 2010

More than 60 scientists from a dozen institutions have converged on this urban area to study how tiny particles called aerosols affect the climate. Sending airplanes and weather balloons outfitted with instruments up in the ...

NASA probes the sources of the world's tiny pollutants

Jan 30, 2007

Pinpointing pollutant sources is an important part of the ongoing battle to improve air quality and to understand its impact on climate. Scientists using NASA data recently tracked the path and distribution ...

Climate change from black carbon depends on altitude

Apr 14, 2011

Scientists have known for decades that black carbon aerosols add to global warming. These airborne particles made of sooty carbon are believed to be among the largest man-made contributors to global warming because they absorb ...

Recommended for you

Melting during cooling period

13 hours ago

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Warm US West, cold East: A 4,000-year pattern

16 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

User comments : 0

More news stories

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...