A channel of unexpected significance

Aug 13, 2012

Scientists from the research groups of Prof. Dr. Susana Andrade and Prof. Dr. Oliver Einsle, members of the Institute of Organic Chemistry and the Cluster of Excellence BIOSS, the Centre for Biological Signalling Studies of the University of Freiburg, have collected the first precise data ever on the function of a transport protein for formate – an important metabolite in bacteria. The findings could potentially lead to the development of new antibiotic active ingredients, as the research team reports in the scientific journal PNAS.

The microbial intestinal flora of mammals is composed of various microorganisms and species of bacteria. The human intestine is home to several hundred grams of microorganisms, which are particularly essential in processing food. In an environment that is rich in nutrients and carbohydrates but poor in oxygen, many species of bacteria have developed a special form of metabolism: mixed- fermentation. The process involves breaking down sugar that enters into the intestine in foods to organic acids like formic acid, acetic acid, and lactic acid and then excreting them. This provides the bacteria with energy but also leads to a considerable acidification of their environment, benefiting both good intestinal bacteria and pathogenic, i.e. disease causing, species like cholera bacteria and salmonella. Mixed-acid fermentation is missing in the human body. The molecular components of this process in bacteria thus provide a basis for developing new antibiotic active ingredients against the pathogenic species.

Formate is a central protein component in mixed-acid fermentation. Intestinal bacteria possess the formate channel FocA, a special that transports formate, the negatively charged ion of formic acid, over the cell membrane of the bacteria. In order to learn more about the function of FocA, Andrade introduced this protein into an artificial biological membrane and measured the electric currents of ions as they flowed through the formate channel. In addition to precise data on the transport behavior of FocA, the team succeeded in collecting detailed information on the channel’s gating device: When the pH value of the environment is too low, it prevents from damaging themselves by continuing to export acids. The Freiburg also discovered that FocA can transport even more different anions: the ions of acetic acid, lactic acid, and pyruvic acid – precisely the products of mixed-acid fermentation. The behavior of the channel for the various bonds corresponds to the proportions to which they are formed during the metabolism of sugar. The channel FocA thus has a much more central significance for this process than previously assumed. This could make it into an ideal basis for future therapeutic measures for diseases of the human intestinal tract.

Explore further: Tarantula toxin is used to report on electrical activity in live cells

More information: Wei Lü, Juan Du, Nikola J. Schwarzer, Elke Gerbig-Smentek, Oliver Einsle & Susana L.A. Andrade (2012) The formate channel FocA exports the products of mixed-acid fermentation. Proc. Natl. Acad. Sci. USA, DOI:10.1073/pnas.1204201109

add to favorites email to friend print save as pdf

Related Stories

A sticky solution for identifying effective probiotics

Nov 24, 2009

Scientists have crystallised a protein that may help gut bacteria bind to the gastrointestinal tract. The protein could be used by probiotic producers to identify strains that are likely to be of real benefit to people.

Huge potential for bioplastics

Jul 17, 2006

It almost sounds too good to be true - turning cow pats into plastic. But the unlikely-looking liquid in the flask Dr Steven Pratt holds is the key ingredient to an environmentally friendlier drink bottle.

Promising probiotic treatment for inflammatory bowel disease

Jan 20, 2010

Bacteria that produce compounds to reduce inflammation and strengthen host defences could be used to treat inflammatory bowel disease (IBD). Such probiotic microbes could be the most successful treatment for IBD to date, ...

Recommended for you

Scientists see how plants optimize their repair

7 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

13 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

13 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

User comments : 0