A channel of unexpected significance

August 13, 2012

Scientists from the research groups of Prof. Dr. Susana Andrade and Prof. Dr. Oliver Einsle, members of the Institute of Organic Chemistry and the Cluster of Excellence BIOSS, the Centre for Biological Signalling Studies of the University of Freiburg, have collected the first precise data ever on the function of a transport protein for formate – an important metabolite in bacteria. The findings could potentially lead to the development of new antibiotic active ingredients, as the research team reports in the scientific journal PNAS.

The microbial intestinal flora of mammals is composed of various microorganisms and species of bacteria. The human intestine is home to several hundred grams of microorganisms, which are particularly essential in processing food. In an environment that is rich in nutrients and carbohydrates but poor in oxygen, many species of bacteria have developed a special form of metabolism: mixed- fermentation. The process involves breaking down sugar that enters into the intestine in foods to organic acids like formic acid, acetic acid, and lactic acid and then excreting them. This provides the bacteria with energy but also leads to a considerable acidification of their environment, benefiting both good intestinal bacteria and pathogenic, i.e. disease causing, species like cholera bacteria and salmonella. Mixed-acid fermentation is missing in the human body. The molecular components of this process in bacteria thus provide a basis for developing new antibiotic active ingredients against the pathogenic species.

Formate is a central protein component in mixed-acid fermentation. Intestinal bacteria possess the formate channel FocA, a special that transports formate, the negatively charged ion of formic acid, over the cell membrane of the bacteria. In order to learn more about the function of FocA, Andrade introduced this protein into an artificial biological membrane and measured the electric currents of ions as they flowed through the formate channel. In addition to precise data on the transport behavior of FocA, the team succeeded in collecting detailed information on the channel’s gating device: When the pH value of the environment is too low, it prevents from damaging themselves by continuing to export acids. The Freiburg also discovered that FocA can transport even more different anions: the ions of acetic acid, lactic acid, and pyruvic acid – precisely the products of mixed-acid fermentation. The behavior of the channel for the various bonds corresponds to the proportions to which they are formed during the metabolism of sugar. The channel FocA thus has a much more central significance for this process than previously assumed. This could make it into an ideal basis for future therapeutic measures for diseases of the human intestinal tract.

Explore further: Huge potential for bioplastics

More information: Wei Lü, Juan Du, Nikola J. Schwarzer, Elke Gerbig-Smentek, Oliver Einsle & Susana L.A. Andrade (2012) The formate channel FocA exports the products of mixed-acid fermentation. Proc. Natl. Acad. Sci. USA, DOI:10.1073/pnas.1204201109

Related Stories

Huge potential for bioplastics

July 17, 2006

It almost sounds too good to be true - turning cow pats into plastic. But the unlikely-looking liquid in the flask Dr Steven Pratt holds is the key ingredient to an environmentally friendlier drink bottle.

A sticky solution for identifying effective probiotics

November 24, 2009

Scientists have crystallised a protein that may help gut bacteria bind to the gastrointestinal tract. The protein could be used by probiotic producers to identify strains that are likely to be of real benefit to people.

Promising probiotic treatment for inflammatory bowel disease

January 20, 2010

Bacteria that produce compounds to reduce inflammation and strengthen host defences could be used to treat inflammatory bowel disease (IBD). Such probiotic microbes could be the most successful treatment for IBD to date, ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.