Seven steps to 'billion dollar' drugs

August 15, 2012
Seven steps to 'billion dollar' drugs

(Phys.org) -- A highly efficient method for making prostaglandins -- natural, hormone-like chemicals that have pharmaceutical applications -- is reported by University of Bristol scientists this week in Nature. Some synthetic analogues of prostaglandin are ‘billion dollar’ drugs; the prostaglandin analogue latanoprost, which is used to treat glaucoma and ocular hypertension, generates approximately $1.6 billion in sales each year.

are some of the most important molecules in biology and medicine as they regulate a broad range of activities in the body, including blood circulation, digestion and reproduction.

The breadth of biological activity, coupled with their challenging molecular architecture has made prostaglandins popular targets in synthesis for over 40 years. However, since these molecules cannot be isolated from natural sources in sufficient quantities, they have to be synthesised, but routes are lengthy.  For example, the current synthesis of latanoprost requires 20 steps and uses the methodology and strategy developed by E. J. Corey, a giant in the area of synthesis (he was awarded the Nobel Prize in Chemistry, in 1990 "for his development of the theory and methodology of organic synthesis"). Until now, despite huge synthetic effort in industry and academia, advances in the synthesis of prostaglandins since Corey’s contributions have been limited.

Professor Varinder Aggarwal, who led the research at the University’s School of Chemistry, and colleagues now report a concise synthesis of prostaglandin PGF2a, which relies on the use of an organocatalyst, a small organic molecule, to catalyse a key step in the process. The key step not only produces a key intermediate, but it also does so with exquisite control over relative and absolute stereochemistry.  The new process uses a new disconnection which has enabled them to complete the synthesis in just seven steps. It should be possible to modify the authors’ synthetic route to obtain other known prostaglandin-based drugs, e.g. latanaprost in a more cost-effective manner and to make it easier to discover new biologically active prostaglandin analogues.

In a follow-up patent, the authors have described the application of this technology to a simple synthesis of prostaglandin-based drugs, e.g. latanoprost and bimataprost. The methodology should now make it easier to discover new biologically active prostaglandin analogues. It is a major advance and represents a step change in the of this important class of compounds.

Professor Aggarwal said: "Despite the long syntheses and the resulting huge effort that is required for the preparation of these molecules, they are still used in the clinic, because of their important biological activity.

"Being able to make complex pharmaceuticals in a shorter number of steps and therefore more effectively, would mean that many more people could be treated for the same cost."

Explore further: New method to efficiently produce less toxic drugs using organic molecules

More information: Stereocontrolled organocatalytic synthesis of prostaglandin PGF2a in seven steps published in Nature by Graeme Coulthard, William Erb & Varinder K. Aggarwal from the University of Bristol, DOI: 10.1038/nature11411

Related Stories

Breaking new ground in synthesis of anti-cancer agents

November 18, 2010

An anti-cancer research jointly conducted by The Hong Kong Polytechnic University (PolyU) and Peking University Shenzhen Graduate School (PKUSZ) has led to the first total synthesis of an anti-cancer marine natural product, ...

New way of synthesizing organic chemicals mimics nature

July 15, 2011

Organic chemists have found a new way of synthesizing multiple complex organic molecules that until now have needed to be synthesized using time-consuming methods. The new strategy, which mimics natural biosynthesis methods, ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.