A new use for atomically engineered gold

Aug 29, 2012
Jayan Thomas works on in his lab at the University of Central Florida in Orlando. Credit: UCF

A University of Central Florida assistant professor has developed a new material using nanotechnology, which could help keep pilots and sensitive equipment safe from destructive lasers.

UCF Assistant Professor Jayan Thomas, in collaboration with Carnegie Mellon University Associate Professor Rongchao Jin chronicle their work in the July issue of the journal .

Thomas is working with and studying their properties when they are shrunk into a small size regime called nanoclusters. Nanoparticles are already microscopic in size, and a nanometer is about 1/80000 of the thickness of a single strand of human hair. Nanoclusters are on the small end and nanocrystals are on the larger end of the nanoregime. Nano clusters are so small that the that govern the world people touch and smell aren't often observed.

"Nanoclusters occupy the intriguing quantum size regime between atoms and nanocrystals, and the synthesis of ultra-small, atomically precise metal nanoclusters is a challenging task," Thomas said.

Thomas and his team found that nanoclusters developed by adding atoms in a sequential manner could provide interesting optical properties. It turns out that the exhibit qualities that may make them suitable for creating surfaces that would diffuse of high energy. They appear to be much more effective than its big sister, gold nanocrystal which is the (nano) material used by artists to make medieval church window paintings.

So why does it matter?

Think of commercial pilots or fighter pilots. They use sunglasses or helmet shields to protect their eyes from the sun's light. If the glasses or helmet shield could be coated with nanoclusters tested in Thomas' lab at UCF, the shield could potentially diffuse high-energy beams of light, such as laser. Highly sensitive instruments needed for navigation and other applications could also be protected in case of an enemy attack using high energy laser beams.

"These results give me great pleasure since the technique we used to study the optical properties of these atomically precise particle is one invented by UCF Professors Eric VanStryland and David Hagan many years ago," Thomas said. "But the progression we've made is very exciting."

Because nanoclusters appear to have a better ability to diffuse high beams of energy, they are a promising area for future development. There is still plenty of applications to be explored using these very interesting atomically engineered materials. Until now, much research has been focused on the larger nanocrystal.

Thomas is also exploring the use of these particles in the polymer material used for 3D telepresence to make it more sensitive to light. If successful, it can take the current polymers a step closer to developing real time 3D telepresence.

3D-Telepresence provides a holographic illusion to a viewer who is present in another location by giving that person a 360-degree view (in 3D) of everything that's going on. It's a step beyond 3-D and is expected to revolutionize the way people see television and in how they participate in activities around the world. For example, by allowing a viewer to "walk around" a remote location as if in a virtual game, a surgeon could help execute a complicated medical procedure from thousands of miles away.

Explore further: Lab unveil new nano-sized synthetic scaffolding technique

More information: http://dx.doi.org/10.1021/nl301988v

Related Stories

Controlling the size of nanoclusters

Aug 19, 2008

Melissa Patterson, a W. Burghardt Turner Fellow at Stony Brook University (SBU), will give a talk at the American Chemical Society's national meeting in Philadelphia on controlling the size of nanoclusters, research she performed ...

Designing materials for the future

Jun 12, 2012

As energy demands rise, materials scientists are increasingly interested in developing longer-lasting materials for use in the next generation of advanced nuclear and fusion reactors. However, before researchers ...

Recommended for you

Lab unveil new nano-sized synthetic scaffolding technique

13 minutes ago

Scientists, including University of Oregon chemist Geraldine Richmond, have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological ...

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

bearly
3 / 5 (2) Aug 29, 2012
It sounds like it would protect anything that was completely coated from a laser weapon attack.
antialias_physorg
not rated yet Aug 30, 2012
Really depends on what kind of laser attack. A laser pointer? Yes. A CO2 industrial laser? Not so much.

Photons have to be absorbed and reemitted (and the transferred momentum compensated for). If the number of atoms is limited (as it is in a thin film) and the time between absorption and reemision is not zero (as it is in nature) then you can only reflect/deflect so many photons within a given time. Overwhelm that by upping the laser intensity and you simply burn through it.

The effect is also dependent on the frequency of the laser you use. Some materials will reflect lasers in the infrared spectrum well, while not in the visible spectrum or above (e.g. X-ray lasers are notoriously hard to deflect - and conversely also hard to focus). Some materials will reflect well in the visible spectrum but not so well in the IR spectrum.)