A*STAR IME develops ultra low power analog-to-digital converter for medical devices and wireless sensor nodes

Aug 14, 2012

Researchers from A*STAR IME have developed an analog-to-digital converter (ADC) that uses only 400 nW, the lowest power consumption reported to date amongst today’s standard processing technology.

The novel converter design decreases the total power consumption of an implantable 100-channel neural recording microsystem by more than 20%, reducing the patient’s exposure to electromagnetic radiation in the brain tissue when powered wirelessly during the data acquisition of complex brain activity for medical purposes. The converter can also prolong the battery life of other wearable and implantable medical devices and nodes. The ability to extend the battery life and reduce the electromagnetic radiation[1] exposure from implantable devices will significantly reduce the patient’s cost, risk and invasiveness of the surgical procedures involved. Neuroprosthetics, which serve to restore motor functions in paralysed patients due to impaired nervous systems, can potentially benefit from IME’s low power ADC technology.

Elaborating on the research breakthrough, Dr Cheong Jia Hao, the IME scientist who conceptualised and designed the converter integrated circuits (ICs), said, “The ADC employs a tri-level switching scheme to achieve an elegant and simplified digital logic design. By reducing the capacitor charging voltage and the number of complex arithmetic steps in each data conversion cycle, we can boost the energy efficiency to just 19.5 fJ per conversion step, which contributes to significant total power savings without sacrificing data resolution and affecting other hardware features.” The converter is fabricated with 0.18-mm CMOS processes, a mature standard processing technology for large volume production.

Professor Dim-Lee Kwong, Executive Director of IME, said, “IME’s data converter is in synergy with industry’s roadmap to drive energy efficient and sustainable solutions. The power saving highlight in the new technology can also be harnessed for applications that require intensive data conversion and where ultra low is paramount. The ultra low will become one of the key elements in emerging wireless sensor networks, sensor clouds, and sensor fusion for various important applications such as environmental monitoring, industrial monitoring and control, green buildings, smart transportation, and e-health.”

Explore further: A bump circuit with flexible tuning ability that uses 500 times less power

add to favorites email to friend print save as pdf

Related Stories

Versatile ultra-low power biomedical signal processor

Feb 25, 2011

At today’s International Solid-State Circuit Conference (ISSCC2011), imec, Holst Centre and NXP present a versatile ultra-low power biomedical signal processor, CoolBio, meeting the requirements of future ...

Recommended for you

Smartphone-loss anxiety disorder

11 minutes ago

The smart phone has changed our behavior, sometimes for the better as we are now able to connect and engage with many more people than ever before, sometimes for the worse in that we may have become over-reliant on the connectivity ...

For secure software: X-rays instead of passport control

22 minutes ago

Trust is good, control is better. This also applies to the security of computer programs. Instead of trusting "identification documents" in the form of certificates, JOANA, the new software analysis tool, examines the source ...

Razor-sharp TV pictures

2 hours ago

The future of movie, sports and concert broadcasting lies in 4K definition, which will bring cinema quality TV viewing into people's homes. 4K Ultra HD has four times as many pixels as today's Full HD. And ...

User comments : 0