Researchers develop simplified approach for high-power, single-mode lasers

Aug 24, 2012

(Phys.org)—When it comes to applications like standoff sensing—using lasers to detect gas, explosives, or other materials from a safe distance—the laser's strength is of the utmost importance. A stronger and purer beam means devices can sense danger more accurately from a greater distance, which translates into safer workers, soldiers, and police officers.

Northwestern University researchers have developed a new resonator that creates the purest, brightest, and most powerful single-mode quantum cascade lasers yet at the 8-12 micron range, a wavelength of great interest for both military and industrial use.

A paper describing the findings, "Angled Cavity Broad Area Quantum Cascade Lasers," was published August 21 in the journal Applied Physics Letters.

in the 8-12 micron range is of interest for military and industrial use equally, as almost all chemicals (including nerve gases and toxic industrial chemicals) can be identified by infrared absorption in this range. In addition, the atmosphere is relatively transparent in this , which allows for sensing from a distance.

But to be successful, standoff sensing applications require that laser sources be high-powered, single-mode, and possess good beam quality. Incorporating all three qualities in a single device is a significant challenge, and many sophisticated structures have been proposed with little success.

Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in the McCormick School of Engineering and Applied Science, and her group have created a new laser technology that controls both wavelength and beam quality. The feat is achieved through the use of a new type of "distributed feedback" mechanism called Β-DFB, a simple diffractive feedback in an angled laser cavity.

"Our is the most promising device for creating high-power, single-mode laser sources with good beam quality, and it is inexpensive and can be realized at room temperature," said Razeghi, who leads the Center for Quantum Devices (CQD). "Furthermore the design can be applied to a wide range of semiconductor lasers at any wavelength."

Razeghi and her group demonstrated >6 watts of peak power with nearly diffraction-limited beam quality at a wavelength of 10.4 microns—the highest power single-mode semiconductor laser demonstrated at a wavelength greater than 10 microns. Refinement of the design, particularly related to optimization of the cavity design and improvement of the gain medium, are expected to increase the output power significantly.

The development of the Β-DFB is complementary to active research efforts within CQD, but is not yet directly funded.

Explore further: Could 'Jedi Putter' be the force golfers need?

Related Stories

New VECSEL could mean a step forward for spectroscopy

Oct 25, 2010

(PhysOrg.com) -- "Unfortunately, for spectroscopy, the beam quality of quantum cascade lasers is not satisfying," Hans Zogg tells PhysOrg.com. "We are developing lasers for the mid-infrared range which have an especially good b ...

Building a more versatile laser

Nov 16, 2009

(PhysOrg.com) -- One of the drawbacks associated with using semiconductor lasers is that many of them can only produce a beam of a single wavelength, and can only send that beam in one direction at a time. ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.