Researchers unfold the mechanisms underlying blood disorders

Jul 23, 2012

A Finnish research team together with researchers from New York, USA, has uncovered a protein structure that regulates cell signalling and the formation of blood cells.

The team’s results, published in Nature Structural & Molecular Biology, the most prestigious journal in the field, shed light on the mechanisms at play in haematological disorders and provide new opportunities for the design of disease-specific treatment. The work was carried out with funding from the Academy of Finland, the Cancer Society of Finland, National Institutes of Health and the Sigrid Jusélius Foundation.

Blood cell formation and activity is regulated by cytokines, small cell-signalling protein molecules, through a signal pathway mediated by Janus kinases (JAKs), a family of enzymes. Previous studies have shown that mutations in JAKs can cause severe haematological disorders as well as immunological diseases. These mutations are concentrated in the pseudokinase domain.

Leading laboratories and pharmaceutical companies around the world have long aimed at defining the structure of the pseudokinase domain of JAKs, as it has been found to be a veritable hotspot for pathogenic mutations causing haematological disorders. Led by Professor Olli Silvennoinen, the Finnish research team has now successfully determined the three-dimensional atomic-level structure of both the normal and the pathogenic pseudokinase domain.

Professor Silvennoinen’s team is the first to describe the structure of the pseudokinase domain of JAKs, laying bare the domain’s enzymatic mechanisms at the atomic level. The team also managed to determine the structural change, caused by the JAK2 V617F mutation, which gives rise to common myeloproliferative diseases (MPDs), such as polycythemia vera (PV), essential thrombocythemia (ET) and myelofibrosis (MF). PV and ET are blood disorders characterised by an overproduction of red or platelets, whereas MF is a disorder that causes scar tissue to accumulate in the bone marrow. The team’s research results can be put to good use in developing new, targeted therapeutics for these .

The study now published in Nature Structural & Molecular Biology builds on the long-standing expertise of Professor Silvennoinen’s team in Janus kinases. In the early 1990s, while working in the US, Silvennoinen successfully cloned the JAK2 gene and demonstrated its activity in the signalling pathways of erythropoietin and interferon. In Finland, the Silvennoinen’s work focused on the pseudokinase domain, determining and characterising its regulatory function.

The present study was carried out in close collaboration with New York University and Columbia University.

Explore further: Researchers identify new mechanism to aid cells under stress

More information: Rajintha M. Bandaranayake, Daniela Ungureanu, Yibing Shan, David E. Shaw, Olli Silvennoinen and Stevan R. Hubbard: “Crystal structures of the Jak2 pseudokinase domain and the pathogenic mutant V617F”. Nature Structural & Molecular Biology.

add to favorites email to friend print save as pdf

Related Stories

Genetic abnormality may increase risk of blood disorders

Mar 15, 2009

Researchers at Memorial Sloan-Kettering Cancer Center (MSKCC) have shown for the first time that a tendency to develop some blood disorders may be inherited. Their research, published online today in Nature Genetics, identi ...

Protein shows talent for improvisation

Apr 21, 2008

Radio and cable are not required for communication within and between living cells. Rather, signal transduction in cells is performed by a multitude of proteins. In order to transfer and interpret these signals correctly, ...

Recommended for you

Researchers identify new mechanism to aid cells under stress

11 hours ago

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

Researchers image and measure tubulin transport in cilia

12 hours ago

Defective cilia can lead to a host of diseases and conditions in the human body—from rare, inherited bone malformations to blindness, male infertility, kidney disease and obesity. Scientists knew that somehow ...

Researchers find unusually elastic protein

15 hours ago

Scientists at Heidelberg University have discovered an unusually elastic protein in one of the most ancient groups of animals, the over 600-million-year-old cnidarians. The protein is a part of the "weapons system" that the ...

How malaria-spreading mosquitoes can tell you're home

Jan 22, 2015

Females of the malaria-spreading mosquito tend to obtain their blood meals within human dwellings. Indeed, this mosquito, Anopheles gambiae, spends much of its adult life indoors where it is constantly expose ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.