Turbulences at a standstill

July 27, 2012

For theoretical physicist Dima Shepelyansky from the CNRS-University of Toulouse, France, devising models of chaos and turbulence is his bread and butter. In a recent study published in European Physical Journal B, he presents an exception he found in a model of turbulence, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific energy threshold, there are no energy flows, similar to the way electron currents and energy spreading are stopped in disordered solids.

The author relies on to study a kind of turbulence—known as Kolmogorov turbulence—that describes how energy flows from large to small scale in a confined space. According to this concept, energy is introduced on large scales, e.g. by wind, and it is absorbed on small scales due to energy dissipation. This approach assumes that a small perturbation will make the system evolution chaotic as energy flows from large to small scales.

However, Shepelyansky found that a phenomenon normally observed in disordered metals, called Anderson localisation, which implies that there is no energy flow from one side of the metal to the other, also occurred with the type of turbulences he was focusing on. As a result, energy flow from large scale to small scale does not happen under specific circumstances where the energy level is below a certain threshold level. This result is in keeping with our intuitive experience of a small wind not creating a storm, and that wind needs to reach a certain threshold before a storm can be created.

Thus his study successfully links three areas of research based on , disordered solids and turbulence, including wave , dynamical systems and statistical mechanics.

Explore further: From ‘macro’ to ‘micro’ – turbulence seen by Cluster

More information: D. Shepelyansky (2012), Kolmogorov turbulence, Anderson localization and KAM integrability, European Physical Journal B, DOI 10.1140/epjb/e2012-30193-0

Related Stories

Energy simulation may explain turbulence mystery

February 26, 2009

(PhysOrg.com) -- A new 3D model linking magnetic fields to the transfer of energy in space might help solve a physics mystery first observed in the solar wind 15 years ago.

Optimizing large wind farms

November 23, 2010

Wind farms around the world are large and getting larger. Arranging thousands of wind turbines across many miles of land requires new tools that can balance cost and efficiency to provide the most energy for the buck.

Wind energy lessens under heat wave conditions

November 8, 2011

During the summer 2003, high temperatures and drought conditions in Europe led to a reduction of the wind force with direct consequences on the wind energy power, reduced by 22%.  The study was recently published in ...

Recommended for you

Quantum dots used to convert infrared light to visible light

December 1, 2015

(Phys.org)—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.